On the Blaschke factors in polydisk
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 245-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to construct a multidimensional analogue of the Blaschke factors. The relevance of the construction of this analogue was prompted by a recent joint article by Alpay and Yger devoted to the multidimensional interpolation theory for functional spaces in special Weyl polyhedra. By such a factor we understand a set of special inner rational functions in a unit polydisk. We construct inner rational functions for the case of three complex variables, in particular, using the Lee-Yang polynomial from the theory of phase transitions in statistical mechanics.
Keywords: Blaschke product, Lee-Yang polynomial.
@article{JSFU_2023_16_2_a9,
     author = {Matvey E. Durakov},
     title = {On the {Blaschke} factors in polydisk},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {245--252},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a9/}
}
TY  - JOUR
AU  - Matvey E. Durakov
TI  - On the Blaschke factors in polydisk
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 245
EP  - 252
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a9/
LA  - en
ID  - JSFU_2023_16_2_a9
ER  - 
%0 Journal Article
%A Matvey E. Durakov
%T On the Blaschke factors in polydisk
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 245-252
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a9/
%G en
%F JSFU_2023_16_2_a9
Matvey E. Durakov. On the Blaschke factors in polydisk. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 245-252. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a9/

[1] W.Blaschke, “Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen”, Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig, 67 (1915), 194–200

[2] D.Alpay, A.Yger, “Cauchy-Weil formula, Schur-Agler type classes, new Hardy spaces of the polydisk and interpolation problems”, Journal of Mathematical Analysis and Applications, 504:2 (2021), 125437 | DOI | MR | Zbl

[3] Tsung Dao Lee, Chen Ning Yang, “Statistical theory of equations of state and phase transitions”, Physical Rev., 87 (1952), 404–419 | DOI | MR

[4] I.Gel'fand, A.Zelevinskii, M.Kapranov, “Hypergeometric functions and toral manifolds”, Funct. Anal. Its Appl., 23 (1989), 94–106 | DOI | MR | Zbl

[5] M.Forsberg, M.Passare, A.Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Mathematics, 151 (2000), 45–70 | DOI | MR | Zbl

[6] G.Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Annals of Mathematics, 151 (2000), 309–326 | DOI | MR | Zbl

[7] M.Passare, A.Tsikh, “Amoebas: their spines and their contours”, Contemporary Mathematics, 377, 2005, 275–288 | DOI | MR | Zbl

[8] W.Rudin, Function theory in polydiscs, W. A. Benjamin, New York, 1969 | MR | Zbl

[9] R.Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics and Physics, 1970 | MR | Zbl