The Cauchy problem for equation of elasticity theory
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 162-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem on the analytic continuation of the solution of equation of elasticity theory in a spatial domain is considered. Continuation is based on the values of the solution and stresses on a part of the boundary of this domain. Hence the problem presents the Cauchy problem.
Keywords: Cauchy problem,Lame equation, elliptic system,ill-posed problem, regularization.
Mots-clés : Carleman matrix
@article{JSFU_2023_16_2_a1,
     author = {Olimdjan I. Makhmudov and Ikbol E. Niyozov},
     title = {The {Cauchy} problem for equation of elasticity theory},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {162--175},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/}
}
TY  - JOUR
AU  - Olimdjan I. Makhmudov
AU  - Ikbol E. Niyozov
TI  - The Cauchy problem for equation of elasticity theory
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 162
EP  - 175
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/
LA  - en
ID  - JSFU_2023_16_2_a1
ER  - 
%0 Journal Article
%A Olimdjan I. Makhmudov
%A Ikbol E. Niyozov
%T The Cauchy problem for equation of elasticity theory
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 162-175
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/
%G en
%F JSFU_2023_16_2_a1
Olimdjan I. Makhmudov; Ikbol E. Niyozov. The Cauchy problem for equation of elasticity theory. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 162-175. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/

[1] A.N.Tikhonov, “Solution of ill-posed problems and the regularization method”, Soviet Math. Dokl., 4 (1963), 1035–1038 | MR

[2] I.G.Petrovskii, Lectures on Partial Differential Equations, Fizmatgiz, M., 1961 (in Russian)

[3] T.Carleman, Les functions quasi analitiques, Gauthier–Villars, Paris, 1926

[4] G.M.Goluzin, V.I.Krylov, “Generalized Narleman formula and its application to analytic continuation of functions”, Mat. Sb., 40:2 (1933), 144–149 | Zbl

[5] M.M.Lavrent'ev, Some Ill-Posed Problems of Mathematical Physics, Computer Center of the Siberian Division of the Russian Academy of Sciences, Novosibirck, 1962 (in Russian) | MR

[6] S.N.Mergelyan, “Harmonic approximation and approximate solution of the Cauchy problem for Laplace equation”, Usp. Mat. Nauk, 11:5(71) (1956), 337–340 | MR

[7] V.A.Fock, F.M.Kuni, “On introduction of “damping” function into dispersion relations”, Dokl. Akad. Nauk SSSR, 127:6 (1959), 1195–1198 (in Russian) | Zbl

[8] A.A.Gonchar, “On analytic continuation from the 'edge of wedge'”, Ann. Acad. Sci. Finnical. Ser. AI: Matem., 10 (1985), 221–225 | MR | Zbl

[9] A.M.Kytmanov, Bochner-Martinelli Integral and Its Applications, Nauka, Novosibirsk, 1991 | MR

[10] Sh.Ya.Yarmukhamedov, “Cauchy problem for the Laplace equation”, Dokl. Acad. Nauk SSSR [Soviet Math. Dokl.], 235:2 (1977), 281–283 | MR | Zbl

[11] N.N Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Math. Top., 7, Akademie Verlag, VCH, Berlin, 1995 | MR | Zbl

[12] A.A.Shlapunov, “The Cauchy problem for Laplace's equation”, Sib. Math. J., 33:3 (1992), 534–542 | DOI | MR | Zbl

[13] O.Makhmudov, I. Niyozov, N.Tarkhanov, “The Cauchy Problem of Couple-Stress Elasticity”, Contemporary Mathematics, 455, AMS, 2008, 297–310 | DOI | MR | Zbl

[14] O.Makhmudov, I.Niyozov, “The Cauchy problem for the Lame system in infinite domains in $R^m$”, J. Inverse Ill-Posed Probl., 14:9 (2006), 905–924 | DOI | MR | Zbl

[15] O.I.Makhmudov, I.E.Niyozov, “On a Cauchy problem for a system of equations of elasticity theory”, Differential Equations, 36:5 (2000), 749–754 | DOI | MR | Zbl

[16] O.I.Makhmudov, I.E.Niyozov, “Regularization of the solution of the Cauchy problem for a system of equations in the theory of elasticity in displacements”, Sibirian Math. J., 39 (1998), 323–330 | DOI | MR | Zbl

[17] M.M.Lavrent'ev, V.G.Romanov, S.P.Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Nauka, Novosibirsk–M., 1980 | MR | Zbl

[18] L.A.Aizenberg, Carleman Formulas in Complex Analysis, Nauka, Novosibirsk, 1990 | MR | Zbl

[19] A.A.Shlapunov, “On the Cauchy problem for the Lame system”, Journal of Applied Mathematics and Mechanics, 76:11 (1996), 215–221 | DOI | MR | Zbl

[20] V.D.Kupradze, T.G.Gegeliya, M.O.Basheleishvil, T.V.Burchuladze, Three-Dimensional Problems of Mathematical Theory of Elasticity and Thermoelasticity, Nauka, M., 1976 | MR

[21] M.M.Dzharbashyan, Integral Transformations and Representations of Functions in a Complex Domain, Nauka, M., 1966 (in Russian) | MR

[22] N.N.Tarkhanov, Laurent Series for Solutions of Elliptic Systems, Nauka, Novosibirsk, 1991 | MR | Zbl

[23] V.I.Smirnov, A Course in Higher Mathematics, Part 2, v. 3, Nauka, M. | MR