The Cauchy problem for equation of elasticity theory
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 162-175

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem on the analytic continuation of the solution of equation of elasticity theory in a spatial domain is considered. Continuation is based on the values of the solution and stresses on a part of the boundary of this domain. Hence the problem presents the Cauchy problem.
Keywords: Cauchy problem,Lame equation, elliptic system,ill-posed problem, regularization.
Mots-clés : Carleman matrix
@article{JSFU_2023_16_2_a1,
     author = {Olimdjan I. Makhmudov and Ikbol E. Niyozov},
     title = {The {Cauchy} problem for equation of elasticity theory},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {162--175},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/}
}
TY  - JOUR
AU  - Olimdjan I. Makhmudov
AU  - Ikbol E. Niyozov
TI  - The Cauchy problem for equation of elasticity theory
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 162
EP  - 175
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/
LA  - en
ID  - JSFU_2023_16_2_a1
ER  - 
%0 Journal Article
%A Olimdjan I. Makhmudov
%A Ikbol E. Niyozov
%T The Cauchy problem for equation of elasticity theory
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 162-175
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/
%G en
%F JSFU_2023_16_2_a1
Olimdjan I. Makhmudov; Ikbol E. Niyozov. The Cauchy problem for equation of elasticity theory. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 162-175. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a1/