Summation of functions and polynomial solutions to a multidimensional difference equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 153-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a set of polynomial difference operators which allows us to solve the summation problem and describe the space of polynomial solutions for these operators in equations with the polynomial right-hand side. The criterion describing these polynomial difference operators was obtained. The theorem describing the space of polynomial solutions for the operators was proved.
Keywords: Bernoulli numbers, summation problem, multidimensional difference equation, Euler–Maclaurin formula, Todd operator.
Mots-clés : Bernoulli polynomials
@article{JSFU_2023_16_2_a0,
     author = {Andrey A. Grigoriev and Evgeniy K. Leinartas and Alexander P. Lyapin},
     title = {Summation of functions and polynomial solutions to a multidimensional difference equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {153--161},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a0/}
}
TY  - JOUR
AU  - Andrey A. Grigoriev
AU  - Evgeniy K. Leinartas
AU  - Alexander P. Lyapin
TI  - Summation of functions and polynomial solutions to a multidimensional difference equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 153
EP  - 161
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a0/
LA  - en
ID  - JSFU_2023_16_2_a0
ER  - 
%0 Journal Article
%A Andrey A. Grigoriev
%A Evgeniy K. Leinartas
%A Alexander P. Lyapin
%T Summation of functions and polynomial solutions to a multidimensional difference equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 153-161
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a0/
%G en
%F JSFU_2023_16_2_a0
Andrey A. Grigoriev; Evgeniy K. Leinartas; Alexander P. Lyapin. Summation of functions and polynomial solutions to a multidimensional difference equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 2, pp. 153-161. http://geodesic.mathdoc.fr/item/JSFU_2023_16_2_a0/

[1] S.A.Abramov, “Indefinite sums of rational functions”, Proceedings of ISSAC'95, 1995, 303–308 | Zbl

[2] S.A.Abramov, “On the summation of rational functions”, USSR Computational Mathematics and Mathematical Physics, 11 (1971), 324–330 | DOI | MR

[3] T.Arakawa, T.Ibukiyama, M.Kaneko, Bernoulli Numbers and Zeta Functions, Springer, 2014 | MR | Zbl

[4] M.Brion, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl

[5] C.E.Froberg, Introduction to Numerical Analysis, Addison–Wesley, Reading, Mass., 1965 | MR | Zbl

[6] A.O.Gelfond, Calculus of finite differences, Nauka, M., 1977 (in Russian) | MR

[7] G.Hardy, Divergent series, Oxford University Press, London, 1949 | MR | Zbl

[8] M.Kauers, Algorithms for Nonlinear Higher Order Difference Equations, Ph.D. Thesis, RISC-Linz, Johannes Kepler University, 2005

[9] M.Kauers, The Concrete Tetrahedron, Springer-Verlag, Wien, 2011 | MR | Zbl

[10] E.K.Leinartas, O.A.Shishkina, “The Discrete Analog of the Newton-Leibniz Formula in the Problem of Summation over Simplex Lattice Points”, Journal of Siberian Federal University. Mathematics $\$ Physics, 12:4 (2019), 503–508 | DOI | MR

[11] A.P.Lyapin, S.Chandragiri, “Generating functions for vector partition functions and a basic recurrence relation”, Journal of Difference Equations and Applications, 25:7 (2019), 1052–1061 | DOI | MR | Zbl

[12] A.P.Lyapin, T.Cuchta, “Sections of the Generating Series of a Solution to a Difference Equation in a Simplicial Cone”, The Bulletin of Irkutsk State University. Series Mathematics, 42 (2022), 75–89 | DOI | MR

[13] S.A.Polyakov, “Indefinite summation of rational functions with factorization of denominators”, Programming and Computer Software, 37:6 (2011), 322–325 | DOI | MR | Zbl

[14] A.V.Pukhlikov, A.G.Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Math. J., 4:4 (1993), 789–812 | MR

[15] J.Riordan, Combinatorial identities, Huntington, N.Y., 1979 | MR

[16] G.C.Rota, D.Kahaner, A.Odlyzko, “On the foundations of combinatorial theory. VIII. Finite operator calculus”, Journal of Mathematical Analysis and Applications, 42:3 (1973), 684–760 | DOI | MR | Zbl

[17] O.A.Shishkina, “Multidimensional Analog of the Bernoulli Polynomials and its Properties”, Journal of Siberian Federal University. Mathematics $\$ Physics, 9:3 (2016), 376–384

[18] O.A.Shishkina, “The Euler-Maclaurin Formula for Rational Parallelotope”, The Bulletin of Irkutsk State University. Series Mathematics, 13 (2015), 56–71 | Zbl

[19] N.M.Temme, “Bernoulli polynomials old and new: Generalization and asymptotics”, CWI Quarterly, 8:1 (1995), 47–66 | MR | Zbl

[20] S.P.Tsarev, “On rational definite summation”, Programming $\$ Computer Software, 31:2 (2005), 56–59 | DOI | MR | Zbl

[21] A.V.Ustinov, “A Discrete Analog of Euler's Summation Formula”, Math. Notes, 71:6 (2002), 851–856 | DOI | MR | Zbl