Effective dielectric permeability of a medium with periodic inclusions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 76-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for estimating the effective dielectric permittivity tensor is described in the paper. The method is based on variational principle for media with periodic inclusions. It allows one to obtain upper and lower bounds for possible values of the dielectric permittivity of a two-component system. Numerical results for composite structures with dielectric (metal) cubical and spherical inclusions are presented.
Keywords: effective dielectric permittivity tensor, variational principle, periodic inclusionseffective dielectric permittivity tensor, variational principle, periodic inclusions.
@article{JSFU_2023_16_1_a7,
     author = {Vladimir P. Kazantsev and Oleg A. Zolotov and Irina A. Baranova and Viktor E. Zalizniak},
     title = {Effective dielectric permeability of a medium with periodic inclusions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {76--86},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a7/}
}
TY  - JOUR
AU  - Vladimir P. Kazantsev
AU  - Oleg A. Zolotov
AU  - Irina A. Baranova
AU  - Viktor E. Zalizniak
TI  - Effective dielectric permeability of a medium with periodic inclusions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 76
EP  - 86
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a7/
LA  - en
ID  - JSFU_2023_16_1_a7
ER  - 
%0 Journal Article
%A Vladimir P. Kazantsev
%A Oleg A. Zolotov
%A Irina A. Baranova
%A Viktor E. Zalizniak
%T Effective dielectric permeability of a medium with periodic inclusions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 76-86
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a7/
%G en
%F JSFU_2023_16_1_a7
Vladimir P. Kazantsev; Oleg A. Zolotov; Irina A. Baranova; Viktor E. Zalizniak. Effective dielectric permeability of a medium with periodic inclusions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a7/

[1] J.C.Maxwell, A treatise on electricity and magnetism, Oxford, 1873

[2] L.D.Landau, E.M.Lifshitz, Electrodynamibs of Continuous Media, Pergamon Press, Oxford, 1960

[3] V.P.Kazantsev, “Variational estimates in electrostatics of dielectrics”, Journal of Technical physics, 53:3 (1983), 449–456 (in Russian)

[4] V.P.Kazantsev, “Determination of polarizability of dielectric particles following from variational principles”, Radio physics, 23 (1980), 635–637 (in Russian)

[5] V.S.Zarubin, G.N.Kuvyrkin, I.YuSavelyeva, “Estimates of Dielectric Permeability of a Composite with Inclusions in the Form of Rotation Ellipsoids”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 4 (2016) | DOI

[6] V.S.Zarubin, G.N.Kuvyrkin, I.YuSavelyeva, “Mathematical modelling of dielectric properties of composite with metal foil inclusions”, Mathematics and mathematical modelling, 5 (2015), 64–82 (in Russian) | DOI

[7] V.S.Zarubin, G.N.Kuvyrkin, I.Yu.Savelyeva, “Evaluation of Dielectric Permittivity of Composite with Dispersed Inclusions”, Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, 2015, no. 3, 50–64 (in Russian) | DOI

[8] B.Sareni, L.Krähenbühl, A.Beroual, “Effective dielectric constant of periodic composite materials”, Journal of Applied Physics, 80 (1996), 1688 | DOI

[9] X.Chen, Y.Cheng, K Wu, Y.Meng, S.Wu., “Calculation of dielectric constant of two-phase disordered composites by using FEM”, Conference Record of the 2008 IEEE International Symposium on Electrical Insulation (9–12 June 2008, Vancouver, BC, Canada)