On special empirical processes of independence in presence of covariates
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 66-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate asymptotic properties of one class of empirical processes in case of presence of covariates for a class of measurable functions.
Keywords: empirical processes, metrical entropy, Gaussian processes.
@article{JSFU_2023_16_1_a6,
     author = {Abduraxim A. Abdushukurov and Farkhad A. Abdikalikov},
     title = {On special empirical processes of independence in presence of covariates},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a6/}
}
TY  - JOUR
AU  - Abduraxim A. Abdushukurov
AU  - Farkhad A. Abdikalikov
TI  - On special empirical processes of independence in presence of covariates
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 66
EP  - 75
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a6/
LA  - en
ID  - JSFU_2023_16_1_a6
ER  - 
%0 Journal Article
%A Abduraxim A. Abdushukurov
%A Farkhad A. Abdikalikov
%T On special empirical processes of independence in presence of covariates
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 66-75
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a6/
%G en
%F JSFU_2023_16_1_a6
Abduraxim A. Abdushukurov; Farkhad A. Abdikalikov. On special empirical processes of independence in presence of covariates. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a6/

[1] A.A.Abdushukurov, L.R.Kakadjanova, “A class of special empirical processes of independence”, J. Sib. Fed. Univ. Math. Phys., 8:2 (2015), 125–133

[2] A.A.Abdushukurov, L.R.Kakadjanova, “Sequential empirical process of independence”, J. Sib. Fed. Univ. Math. Phys., 11:5 (2018), 634–643 | DOI

[3] A.W.Van der Vaart, J.A.Wellner, Weak convergence and empirical processes, Springer, 1996

[4] A.W.Van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998

[5] V.N.Vapnik, Statistical learning theory, Wiley, New York, 1998

[6] I. Van Keilegom, N.Veraverbeke, “Estimation and bootstrap with censored data in fixed design nonparametric regression”, Annals of the Institute of Statistical Mathematics, 49 (1997), 467–491

[7] N.Veraverbeke, C.Cadarso-Suarez, “Estimation of the conditional distribution in a conditional Koziol-Green model”, Test, 9 (2000), 97–122

[8] R.Breakers, Regression problems with partially informative or dependent censoring, Limdburgs University Centrum, 2004

[9] A.A.Abdushukurov, “Nonparametric estimation of the distribution function based on relative risk function”, Commun. Statist.: Th and Math., 27:8 (1998), 1991–2012

[10] E.L.Kaplan, P.L.Meier, “Nonparametric estimation from incomplete observations”, J.A.S.A., 53 (1958), 457–481