Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 48-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper compares the exact solution of one-dimensional and two-dimensional stationary convective flow equations with a free boundary for a flat liquid channel. Constant temperature gradient is set on the bottom solid wall. On the upper free boundary the surface tension coefficient is linearly dependent on temperature. Zero heat flux and velocities are set on the side walls of the two-dimensional problem. The deviation of the one-dimensional exact solution is determined for different aspect ratio and Marangoni number.
Keywords: thermocapillary, Marangoni number.
Mots-clés : interface
@article{JSFU_2023_16_1_a4,
     author = {Viktor K. Andreev and Artem I. Pyanykh},
     title = {Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {48--55},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a4/}
}
TY  - JOUR
AU  - Viktor K. Andreev
AU  - Artem I. Pyanykh
TI  - Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 48
EP  - 55
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a4/
LA  - en
ID  - JSFU_2023_16_1_a4
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%A Artem I. Pyanykh
%T Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 48-55
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a4/
%G en
%F JSFU_2023_16_1_a4
Viktor K. Andreev; Artem I. Pyanykh. Comparative analysis of the analytical and numerical solution of the problem of thermocapillary convection in a rectangular channel. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 48-55. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a4/

[1] R.V.Birikh, “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 5 (1966), 69–72

[2] A.G.Kirdyashkin, “Thermogravitational and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient”, Int. J. Heat Mass Transfer, 27:8 (1984), 1205–1218

[3] A.G.Kirdyashkin, “Thermocapillary and thermogravitational convection in a horizontal liquid layer”, Hydromechanics and transfer processes in weightlessness, UC AS USSR, Sverdlovsk, 1983, 81–86 (in Russian)

[4] A.G.Kirdyashkin, Thermocapillary periodic flows, Preprint No 8, IGG SB AS USSR, Novosibirsk, 1985 (in Russian)

[5] M.K.Smith, S.H.Davies, “Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities”, Jour. Fluid Mech., 132 (1983), 119–144

[6] J.-J.Xu, S.H.Davis, “Liquid bridges with thermocapillarity”, Physics of Fluids, 26:10 (1983), 2880–2886

[7] V.B.Bekezhanova, “Convective instability of a two-layer fluid flow on an inclined plane”, Abstracts of the Russian Conference “New Mathematical Models of Continuum Mechanics: Construction and Study”, Lavrentiev Institute of Hydrodynamics SB RAS, Novosibirsk, 2009, 32–33 (in Russian)