Construction of an exact solution of special type for the 3D problem of thermosolutal convection in two layered system
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 26-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A three-dimensional joint flow of a liquid and a binary mixture with common interface is considered. It is assumed that the temperature field in the layers has a quadratic distribution. An exact solution of certian model problem is constructed, explicit expression for all the required function are obtained using a specific closing relation.
Keywords: Oberbeck–Boussinesq approximation, surface energy, binary mixture.
@article{JSFU_2023_16_1_a2,
     author = {Marina V. Efimova},
     title = {Construction of an exact solution of special type for the {3D} problem of thermosolutal convection in two layered system},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a2/}
}
TY  - JOUR
AU  - Marina V. Efimova
TI  - Construction of an exact solution of special type for the 3D problem of thermosolutal convection in two layered system
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 26
EP  - 34
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a2/
LA  - en
ID  - JSFU_2023_16_1_a2
ER  - 
%0 Journal Article
%A Marina V. Efimova
%T Construction of an exact solution of special type for the 3D problem of thermosolutal convection in two layered system
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 26-34
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a2/
%G en
%F JSFU_2023_16_1_a2
Marina V. Efimova. Construction of an exact solution of special type for the 3D problem of thermosolutal convection in two layered system. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 26-34. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a2/

[1] V.K.Andreev, Yu.A.Gaponenko,O.N.Goncharova, V.V.Pukhnachov, Mathematical models of convection, de Gruyter studies in mathematical physics, De Gruyter, Berlin/Boston, 2012

[2] V.B.Bekezhanova, O.N.Goncharova, I.A.Shefer, “Analysis of an Exact Solution of Problem of the Evaporative Convection (Review). Part I. Plane Case”, J. Sib. Fed. Univ. Math. Phys., 11:2 (2018), 178–190 | DOI

[3] V.B.Bekezhanova, O.N.Goncharova, I.A.Shefer, “Analysis of an Exact Solution of Problem of the Evaporative Convection (Review). Part II. Three-dimensional Flows”, J. Sib. Fed. Univ. Math. Phys., 11:3 (2018), 342–355 | DOI

[4] V.V.Pukhnachov, “Model of a viscous layer deformation by thermocapillary forces”, European Journal of Applied Mathematics, 13 (2002), 205–224 | DOI