Applications of two summation theorems of Gosper for the ${}_5F_4$ hypergeometric series
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 142-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of two summation theorems of R. W. Gosper for a terminating ${}_5F_4$ hypergeometric series of arguments $1/4$ and $4$, we derive two general double-series identities involving a bounded sequence of arbitrary complex numbers. These series are then applied to obtain two reduction formulas for the Srivastava–Daoust double hypergeometric function.
Keywords: generalised hypergeometric function, bounded sequence, Gosper's summation theorems, Srivastava–Daoust double hypergeometric function.
@article{JSFU_2023_16_1_a13,
     author = {M. I. Qureshi and R. B. Paris and M. Kashif Khan},
     title = {Applications of two summation theorems of {Gosper} for the ${}_5F_4$ hypergeometric series},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {142--148},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a13/}
}
TY  - JOUR
AU  - M. I. Qureshi
AU  - R. B. Paris
AU  - M. Kashif Khan
TI  - Applications of two summation theorems of Gosper for the ${}_5F_4$ hypergeometric series
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 142
EP  - 148
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a13/
LA  - en
ID  - JSFU_2023_16_1_a13
ER  - 
%0 Journal Article
%A M. I. Qureshi
%A R. B. Paris
%A M. Kashif Khan
%T Applications of two summation theorems of Gosper for the ${}_5F_4$ hypergeometric series
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 142-148
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a13/
%G en
%F JSFU_2023_16_1_a13
M. I. Qureshi; R. B. Paris; M. Kashif Khan. Applications of two summation theorems of Gosper for the ${}_5F_4$ hypergeometric series. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 142-148. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a13/

[1] P.Appell, J.Kampé de Fériet, Fonctions Hyperg${\acute{e}}$ométriques et Hypersphériques: Polyn${\hat{o}}$mes d'Hermite, Gauthier-Villars, Paris, 1926

[2] W.W.Bell, Special Functions for Scientists and Engineers, D.Van-Nostrand Company Ltd., London, 1968

[3] R.G.Buschman, H.M.Srivastava, “Series identities and reducibility of J. Kampé de Fériet functions”, Math. Proc. Cambridge Philos. Soc., 91 (1982), 435–440

[4] B.C.Carlson, Special Functions of Applied Mathematics, Academic Press, New york, 1977

[5] K.-Y.Chen, S.-J.Liu, H.M.Srivastava, “Some double-series identities and associated generating-function relationships”, Appl. Math. Lett., 19 (2006), 887–893 | DOI

[6] J.Choi, “Certain applications of generalized Kummer's summation formulas for $_2F_1$”, Symmetry, 13 (2021), 1–20 | DOI

[7] J.Choi, A.K.Rathie, “Reducibility of certain Kampé de Fériet function with an application to generating relations for products of two Laguerre polynomials”, Filomat, 30:7 (2016), 2059–2066 | DOI

[8] J.Choi, M.I.Qureshi, A.H.Bhat, J.Majid, “Reduction formulas for generalized hypergeometric series associated with new sequences and applications”, Fractal Fract., 5 (2021), 1–23 | DOI

[9] H.Exton, Multiple Hypergeometric Functions and Applicatons, Ellis Horwood Limited, Chichester, 1976

[10] H.Exton, “On the reducibility of the Kampé de Fériet function”, J. Comput. Appl. Math., 83:1 (1997), 119–121

[11] I.Gessel, D.Stanton, “Strange evaluations of hypergeometric series”, SIAM J. Math. Anal., 13:2 (1982), 295–308 | DOI

[12] P.W.Karlsson, “Some reduction formulae for double power series and Kampé de Fériet functions”, Proc. A. Kon. Nedel. Akad. Weten., 87:1 (1984), 31–36

[13] Y.S.Kim, S.Gaboury, A.K.Rathie, “Applications of extended Watson's summation theorem”, Turk. J. Math., 42 (2018), 418–443 | DOI

[14] N.N.Lebedev, Special Functions and their Applications, Prentice Hall, N.J., 1965

[15] A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev, Integrals and Series, v. 3, More Special Functions, Gordon Breach, New York, 1990

[16] E.D.Rainville, Special Functions, The Macmillan Co. Inc., New York, 1960; Reprinted by Chelsea Publ. Co., Bronx, New York, 1971

[17] I.N.Sneddon, Special Functions of Mathematical Physics and Chemistry, II edition, Oliver and Bosell, London, 1961

[18] H.M.Srivastava, M.C.Daoust, “On Eulerian integrals associated with Kampé de Fériet's function”, Publ. Inst. Math. (Beograd) (N.S.), 9:23 (1969), 199–202

[19] H.M.Srivastava, M.C.Daoust, “A note on the convergence of Kampé de Fériet's double hypergeometric series”, Math. Nachr., 53 (1972), 151–159 | DOI

[20] H.M.Srivastava, B.R.K.Kashyap, Special Functions of Queuing Theory and related Stochastic Processes, Academic press, New York–London, 1982

[21] H.M.Srivastava, M.I.Qureshi, S.Jabee, “Some general series identities and summation theorems for Clausens hypergeometric function with negative integer numerator and denominator parameters”, J. Nonlinear Covex Anal., 21:4 (2020), 805–819

[22] H.M.Srivastava, M.I.Qureshi, S.Jabee, “Some general series identities and summation theorems for the Gauss hypergeometric function with negative integer numerator and denominator parameters”, J. Nonlinear Covex Anal., 21:2 (2020), 463–478