Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 121-134

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we investigate the existence of common coupled fixed point and coupled coincidence points in a setting of two $S_{b}$-metric spaces. Here we use a pair of $w$-compatible mappings. Various results are also given in the form of corollaries.
Keywords: common coupled fixed point, coupled coincidence point, $S_{b}$-metric spaces, $w$-compatible mappings.
@article{JSFU_2023_16_1_a11,
     author = {Thounaojam Indubala and Yumnam Rohen and Mohammad Saeed Khan and Nicola Fabiano},
     title = {Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/}
}
TY  - JOUR
AU  - Thounaojam Indubala
AU  - Yumnam Rohen
AU  - Mohammad Saeed Khan
AU  - Nicola Fabiano
TI  - Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 121
EP  - 134
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/
LA  - en
ID  - JSFU_2023_16_1_a11
ER  - 
%0 Journal Article
%A Thounaojam Indubala
%A Yumnam Rohen
%A Mohammad Saeed Khan
%A Nicola Fabiano
%T Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 121-134
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/
%G en
%F JSFU_2023_16_1_a11
Thounaojam Indubala; Yumnam Rohen; Mohammad Saeed Khan; Nicola Fabiano. Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/