Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_1_a11, author = {Thounaojam Indubala and Yumnam Rohen and Mohammad Saeed Khan and Nicola Fabiano}, title = {Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {121--134}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/} }
TY - JOUR AU - Thounaojam Indubala AU - Yumnam Rohen AU - Mohammad Saeed Khan AU - Nicola Fabiano TI - Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 121 EP - 134 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/ LA - en ID - JSFU_2023_16_1_a11 ER -
%0 Journal Article %A Thounaojam Indubala %A Yumnam Rohen %A Mohammad Saeed Khan %A Nicola Fabiano %T Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 121-134 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/ %G en %F JSFU_2023_16_1_a11
Thounaojam Indubala; Yumnam Rohen; Mohammad Saeed Khan; Nicola Fabiano. Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/
[1] Shaban Sedghi, N.Shobe, Abdelkrim Aliouche, “A generalization of fixed point theorems in $S$-metric spaces”, Matematički Vesnik, 64:3 (2012), 258–266
[2] S.Sedghi, N.V.Dung, “Fixed point theorems on $S$-metric spaces”, Matematički Vesnik, 66:1 (2014), 113–124
[3] V.Gupta, R.Deep, “Some coupled fixed point theorems in partially ordered $S$-metric spaces”, Miskolc Mathematical Notes, 16:1 (2015), 181–194
[4] N.V.Dung, “On coupled common fixed points for mixed weakly monotone maps in partially ordered $S$-metric spaces”, Fixed Point Theory and Applications, 2013 (2013), 48 | DOI
[5] I.A.Bakhtin, “The contraction mapping principle in quasimetric spaces”, Functional Analysis, 30 (1989), 26–37
[6] S.Czerwik, “Contraction mapping in b-metric spaces”, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11
[7] S.Czerwik, “Non-linear set-valued contraction mappings in b-metric spaces”, Funct. Anal., 46:2 (1998), 263–276
[8] N.Souayah, Nabil Mlaiki, “A fixed point theorem in $S_{b}$-metric spaces”, J. Math. Computer Sci., 16 (2016), 131–139
[9] Y.Rohen, T.Dosenović, S.Radenović, “A note on the paper "A fixed point theorems in $S_{b}$-metric spaces"”, Filomat, 31:11 (2017), 3335–3346
[10] N.Priyobarta, Y.Rohen, N.Mlaiki, “Complex valued $S_{b}$-metric spaces”, Journal of Mathematical Analysis, 8:3 (2017), 13–24
[11] S.Sedghi, A.Gholidahneh, T.Dosenović, J.Esfahani, S.Radenović, “Common fixed point of four maps in $S_{b}$-metric spaces”, Journal of Linear and Topological Algebra, 5:2 (2016), 93–104
[12] N.Mlaiki, A.Mukheimer, Y.Rohen, N.Souayah, T.Abdeljawad, “Fixed point theorems for $\alpha-\psi-$ contractive mapping in $S_{b}$-metric spaces”, Journal of Mathematical Analysis, 8:5 (2017), 40–46
[13] B.Khomdram, N.Priyobarta, Y.Rohen, T.Indubala, “Remarks on $(\alpha, \beta)$-admissible mappings and fixed points under $\it{Z}$-contraction mappings”, Journal of Mathematics, 2021 (2021), 6697739
[14] D.Guo, V.Lakshmikantham, “Coupled Fixed Points of Nonlinear Operators with Applications”, Nonlinear Analysis: TMA, 11 (1987), 623–632
[15] T.G.Bhaskar, V.Lakshmikantham, “Fixed Point Theory in partially ordered metric spaces and applications”, Nonlinear Analysis: TMA, 65 (2006), 1379–1393
[16] Feng Gu, “On some common coupled fixed point results in rectangular $b$-metric spaces”, J. Nonlinear Sci. Appl., 10 (2017), 4085–4098