Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 121-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we investigate the existence of common coupled fixed point and coupled coincidence points in a setting of two $S_{b}$-metric spaces. Here we use a pair of $w$-compatible mappings. Various results are also given in the form of corollaries.
Keywords:
common coupled fixed point, coupled coincidence point, $S_{b}$-metric spaces, $w$-compatible mappings.
@article{JSFU_2023_16_1_a11,
author = {Thounaojam Indubala and Yumnam Rohen and Mohammad Saeed Khan and Nicola Fabiano},
title = {Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {121--134},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/}
}
TY - JOUR
AU - Thounaojam Indubala
AU - Yumnam Rohen
AU - Mohammad Saeed Khan
AU - Nicola Fabiano
TI - Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2023
SP - 121
EP - 134
VL - 16
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/
LA - en
ID - JSFU_2023_16_1_a11
ER -
%0 Journal Article
%A Thounaojam Indubala
%A Yumnam Rohen
%A Mohammad Saeed Khan
%A Nicola Fabiano
%T Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 121-134
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/
%G en
%F JSFU_2023_16_1_a11
Thounaojam Indubala; Yumnam Rohen; Mohammad Saeed Khan; Nicola Fabiano. Common coupled fixed point theorems for a pair of $S_{b}$-metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 121-134. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a11/