Modelling of stationary flows of a liquid-gas system in an inclined channel subject to evaporation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 110-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-layer flow of liquid and gas-vapor mixture in an inclined channel is considered. The flow is described by the system of the Oberbeck–Boussinesq convection equations with the effects of evaporation and thermodiffusion. A new exact solution of the problem of evaporative convection is constructed under conditions of non-deformable interface and zero vapour flux on the upper channel wall. The analytical form of the solution is presented for the case when the channel boundaries are heated linearly with respect to the longitudinal coordinate. Calculation of the integration constants are described in detail. Examples of flows are provided for the ethanol-nitrogen fluid system.
Keywords: two-layer flow, evaporation, inclined channel.
Mots-clés : exact solution, convection, interface
@article{JSFU_2023_16_1_a10,
     author = {Evgeniy E. Makarov},
     title = {Modelling of stationary flows of a liquid-gas system in an inclined channel subject to evaporation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {110--120},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a10/}
}
TY  - JOUR
AU  - Evgeniy E. Makarov
TI  - Modelling of stationary flows of a liquid-gas system in an inclined channel subject to evaporation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 110
EP  - 120
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a10/
LA  - en
ID  - JSFU_2023_16_1_a10
ER  - 
%0 Journal Article
%A Evgeniy E. Makarov
%T Modelling of stationary flows of a liquid-gas system in an inclined channel subject to evaporation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 110-120
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a10/
%G en
%F JSFU_2023_16_1_a10
Evgeniy E. Makarov. Modelling of stationary flows of a liquid-gas system in an inclined channel subject to evaporation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 110-120. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a10/

[1] V.B.Bekezhanova, O.N.Goncharova, “Problems of the evaporative convection (review)”, Fluid Dyn., 53, Suppl. 1 (2018), 69–102 | DOI

[2] R.V.Birikh, “On thermocapillary convection in a horizontal liquid layer”, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 1966, no. 3, 69–72 (in Russian)

[3] G.A.Ostroumov, Free convection under internal problem conditions, M.–L., 1952 (in Russian)

[4] L.G.Napolitano, “Plane Marangoni-Poiseuille flow two immiscible fluids”, Acta Astronaut, 7 (1980), 461–478

[5] M.I.Shliomis, V.I.Yakushin, “Convection in a two-layers binary system with an evaporation”, Collected papers: Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidrodinamika, 4 (1972), 129–140 (in Russian)

[6] O.N.Goncharova, E.V.Rezanova, Yu.V.Lyulin, O.V.Kabov, “Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation”, High Temperature, 55:6 (2017), 887–897 | DOI

[7] V.B.Bekezhanova, O.N.Goncharova, I.A.Shefer, “Analysis of an exact solution of problem of the evaporative convection (Review). Part I. Plane case”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:2 (2018), 178–190 | DOI

[8] V.B.Bekezhanova, O.N.Goncharova, “Influence of the Dufour and Soret effects on the characteristics of evaporating liquid flows”, Int. J. Heat Mass Transfer, 154 (2020), 119696 | DOI

[9] B.Gebhart, Y.Jaluria, R.L.Mahajan, B.Sammakia, Bouyancy-Induced Flows and Transport, Springer Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1988

[10] I.R.Prigogine, R.Dufay, Chemical Thermodynamics, Longmans, Green, London–N.Y., 1966

[11] L.D.Landau, E.M.Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd ed., Butterworth–Heinemahh, Oxford, 1987

[12] E Kamke, Handbook of Ordinary Differential Equations, 6th ed., Nauka, M., 1976 (in Russian)

[13] A.A.Ravdel', A.M.Ponomaryova, Quick reference book of physical and chemical quantities, Spec. lit., Saint-Peterburg, 1998 (in Russian)