Solution of convection problem in a rotating tube by the Fourier method
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 17-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The non-stationary boundary value problem on the motion of a fluid in a rotating cylindrical pipe is studied in this paper,. The Oberbeck-Boussinesq equations are used to describe the motion of a fluid. From a mathematical point of view, the problem is inverse with respect to pressure gradient along the axis of the cylinder. The solution is found with the use of the method of separation of variables in the form of special Fourier series. Sufficient conditions are given for the solution of a non-stationary problem to reach a stationary regime with increasing time.
Keywords: inverse problem, asymptotic behaviour, method of separation of variables , Bessel functions.
Mots-clés : convection
@article{JSFU_2023_16_1_a1,
     author = {Igor V. Vakhr{\cyra}meev and Evgeniy P. Magdenko},
     title = {Solution of convection problem in a rotating tube by the {Fourier} method},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a1/}
}
TY  - JOUR
AU  - Igor V. Vakhrаmeev
AU  - Evgeniy P. Magdenko
TI  - Solution of convection problem in a rotating tube by the Fourier method
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 17
EP  - 25
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a1/
LA  - en
ID  - JSFU_2023_16_1_a1
ER  - 
%0 Journal Article
%A Igor V. Vakhrаmeev
%A Evgeniy P. Magdenko
%T Solution of convection problem in a rotating tube by the Fourier method
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 17-25
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a1/
%G en
%F JSFU_2023_16_1_a1
Igor V. Vakhrаmeev; Evgeniy P. Magdenko. Solution of convection problem in a rotating tube by the Fourier method. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 17-25. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a1/

[1] V.Barcilon, J.Pedlosky, “On the steady motions produced by a stable stratification in a rapidly rotating fluid”, Jour. Fluid Mech., 29 (1967), 673

[2] G.M.Homsy, J. L.Hudson, “Centrifugal covection and its effect on the asymtotic stability of a bounded rotating fluid heated from below”, Jour. Fluid Mech., 48 (1971), 605

[3] J.EHart, “On the influence of centrifugal buoyncy on rotating convection”, Jour. Fluid Mech., 403 (2000), 133 | DOI

[4] F.H.Busse, “Om the influence of centrifugal buoyncy on rotating convection”, Jour. Fluid Mech., 44 (1970), 441

[5] J.Herrmann, F.H.Busse, “Convection in a rotating cylindrical annulus. Part 4. Modulation and transition to chaos at low Prandtl numbers”, Jour. Fluid Mech., 350 (1997), 209

[6] G. Z.Gershuni, E.M.Zhukhovitsky, Convective stability of an incompressible fluid, Nauka, M., 1972

[7] L.V.Ovsyannikov, Group Analysis of Differential Equations, Nauka, M., 1978

[8] G.Bejtmen, A.Erdane, Higher transcendental functions, v. 2, Bessel Functions, Parabolic Cylinder Functions, Orthogonal Polynomials, Nauka, M., 1974

[9] A.D.Polyanin, Handbook of Linear Equations of Mathematical Physics, FIZMATLIT, M., 2001

[10] G.P.Tolstov, Fourier series, FIZMATLIT, M., 1960