Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial-boundary value problem arising in a modeling an unsteady unidirectional convective flow in vertical heat exchangers with an arbitrary cross section is researched. An a priori estimate in $L_2$ is obtained and uniqueness of the problem solution is proved. For a rectangular and circular sections solution was found in the form of double Fourier series. Sufficient conditions for stabilization of solution to rest with increasing time are given.
Keywords: initial boundary value problem, a priori estimate, Fourier series
Mots-clés : convection.
@article{JSFU_2023_16_1_a0,
     author = {Victor K. Andreev and Alyona I. Uporova},
     title = {Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a0/}
}
TY  - JOUR
AU  - Victor K. Andreev
AU  - Alyona I. Uporova
TI  - Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 5
EP  - 16
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a0/
LA  - en
ID  - JSFU_2023_16_1_a0
ER  - 
%0 Journal Article
%A Victor K. Andreev
%A Alyona I. Uporova
%T Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 5-16
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a0/
%G en
%F JSFU_2023_16_1_a0
Victor K. Andreev; Alyona I. Uporova. Initial boundary value problem on the motion of a viscous heat-conducting liquid in a vertical pipe. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/JSFU_2023_16_1_a0/

[1] V.K.Andreev, Y.A.Gaponenko, O.N.Goncharova, V.V.Pukhnachev, Mathematical Models of Convection, Walter de Gruyter GmbH $\$ Co, KG, Berlin/Boston, 2012

[2] S.G.Mikhlin, Linear Partial Differential Equations, Vysshaya Shkola, M., 1977 (in Russian)

[3] O.A.Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Fizmatlit, Nauka, 1970 (in Russian)

[4] A.D.Polyanin, A Handbook of Linear Equations in Mathematical Physics, Fizmatlit, Nauka, 2001 (in Russian)

[5] N.N.Vorobyov, The Theory of Series, Fizmatlit, Nauka, 1979 (in Russian)

[6] N.B.Vargaftik, Handbook on thermophysical properties of gases and liquids, Fizmatlit, Nauka, 1972 (in Russian)

[7] M.Abramovitz, I.Stegan, Special Functions Handbook, Fizmatlit, Nauka, 1979 (in Russian)

[8] V.G.Watson, The theory of Bessel functions, Publishing house of foreign literature, 1949 (in Russian)

[9] G.P.Tolstov, Fourier series, Fizmatlit, Nauka, 1980 (in Russian)

[10] G.Bateman, A.Erdelyi, Higher transcendental functions, v. 2, Fizmatlit, Nauka, 1974 (in Russian)