@article{JSFU_2022_15_6_a13,
author = {Souheib Merad and Faycel Merghadi and Taieb Hamaizia and Stojan Radenovi\'c},
title = {New fixed point results on $\alpha _{L}^{\psi }$-rational contraction mappings in $b$-metric-like spaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {806--814},
year = {2022},
volume = {15},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a13/}
}
TY - JOUR
AU - Souheib Merad
AU - Faycel Merghadi
AU - Taieb Hamaizia
AU - Stojan Radenović
TI - New fixed point results on $\alpha _{L}^{\psi }$-rational contraction mappings in $b$-metric-like spaces
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2022
SP - 806
EP - 814
VL - 15
IS - 6
UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a13/
LA - en
ID - JSFU_2022_15_6_a13
ER -
%0 Journal Article
%A Souheib Merad
%A Faycel Merghadi
%A Taieb Hamaizia
%A Stojan Radenović
%T New fixed point results on $\alpha _{L}^{\psi }$-rational contraction mappings in $b$-metric-like spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 806-814
%V 15
%N 6
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a13/
%G en
%F JSFU_2022_15_6_a13
Souheib Merad; Faycel Merghadi; Taieb Hamaizia; Stojan Radenović. New fixed point results on $\alpha _{L}^{\psi }$-rational contraction mappings in $b$-metric-like spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 6, pp. 806-814. http://geodesic.mathdoc.fr/item/JSFU_2022_15_6_a13/
[1] A. Amini-Harandi, “Metric-like spaces, partial metric spaces and fixed points”, Fixed Point Theory and Applications, 2012, 204 | DOI
[2] A.G.B. Ahmad, Z.M. Fadail, V.C. Rajić, S. Radenović, “Nonlinear contractions in $0$-complete partial metric spaces”, Abstract and Applied Analysis, 2012 (2012) | DOI
[3] C. Di Bari, Z. Kadelburg, H.K. Nashine, S. Radenović, “Common fixed points of $g$-quasicontractions and related mappings in $0$-complete partial metric spaces”, Fixed Point Theory Appl., 2012, 113 | DOI
[4] T. Hamaizia, A. Aliouche, “A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications”, Int. J. Nonlinear Anal. Appl., 12 (2021), 399–413
[5] S. Moradi, E.A. Audeganib, D. Alimohammadi, “Common fixed point theorems for maps under a new contractive condition”, Winter and Spring, 4 (2013), 15–25
[6] C.T. Aage, J.N. Salunke, “On fixed point theorems in fuzzy metric spaces using a control function”, Winter and Spring, 2 (2011), 50–57
[7] D. Ilic, V Pavlović, V. Rakocević, “Some new extensions of Banach'scontraction principle to partial metric space”, Appl. Math. Lett., 24 (2011), 1326–1330
[8] H.K. Nashine, Z. Kadelburg, “Cyclic contractions and fixed point results via control functions on partial metric spaces”, Int. J. Anal., 2013, 726387
[9] W.A. Kirk, P.S. Srinavasan, P. Veeramani, “Fixed points for mapping satis fying cyclical contractive conditions”, Fixed Point Theory, 4 (2003), 79–89
[10] S. Radenović, “Some remarks on mappings satisfying cyclical contractive conditions”, Afrika Matematika, 27 (2016), 291
[11] N. Fabiano, N. Nikolic, Z.M. Fadaild, Ljiljana Paunovice, Stojan Radenovic, “New Fixed Point Results on $\alpha _{L}^{\psi }$-Rational Contraction Mappings in Metric-Like Spaces”, Filomat, 34:14 (2020), 4627–4636
[12] M.A Alghamdi, N. Hussain, P. Salimi, “Fixed point and coupled fixed point theorems on b-metric-like spaces”, Journal of Inequalities and Applications, 2013, 402 | DOI
[13] S. Radenovic, “Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension”, The Allahabad Mathematical Society, 31 (2016), 39–55
[14] S. Shukla, S. Radenović, V.C. Rajić, “Some common fixed point theorems in $0-\sigma $-complete metric-like spaces”, Vietnam Journal of Mathematics, 41 (2013), 341–352
[15] S. Aleksić, Z.D. Mitrović, S. Radenović, “Picard sequences in b-metric spaces”, Fixed Point Theory, 21 (2020), 35–46
[16] J. Vujaković, H Aydi, S. Radenović, A. Mukheimer, “Some remarks and new results in ordered partial b-metric spaces”, Mathematics, 7 (2019) | DOI
[17] H.A. Hammad, M. De la Sen, “Solution of nonlinear integral equation via fixed point of cyclic $\alpha _{L}^{\psi }$-rational contraction mappingsin metric like spaces”, Bulletin of the Brazilian Mathematical Society. New Series, 51 (2020), 81–105
[18] H.A. Hammad, M. De la Sen, “Generalized contractive mappings and related results in b-metric like spaces with an application”, Symmetry, 11 (2019) | DOI