Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_5_a2, author = {Durdimurod K. Durdiev and Zhanna D. Totieva}, title = {Determination of non-stationary potential analytical with respect to spatial variables}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {565--576}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a2/} }
TY - JOUR AU - Durdimurod K. Durdiev AU - Zhanna D. Totieva TI - Determination of non-stationary potential analytical with respect to spatial variables JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 565 EP - 576 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a2/ LA - en ID - JSFU_2022_15_5_a2 ER -
%0 Journal Article %A Durdimurod K. Durdiev %A Zhanna D. Totieva %T Determination of non-stationary potential analytical with respect to spatial variables %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 565-576 %V 15 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a2/ %G en %F JSFU_2022_15_5_a2
Durdimurod K. Durdiev; Zhanna D. Totieva. Determination of non-stationary potential analytical with respect to spatial variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 565-576. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a2/
[1] L.V. Ovsyannikov, “A singular operator in a scale of Banach spaces”, Soviet Math. Dokl., 6:4 (1965), 1025–1028 (in Russian) | MR | Zbl
[2] L.V. Ovsyannikov, “A nonlocal Cauchy problem in scales of Banach spaces”, Dokl. Akad. Nauk SSSR, 200:4 (1971), 789–792 (in Russian) | MR | Zbl
[3] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Math. Sci., New York Univ., New York, 1974 | MR | Zbl
[4] V.G. Romanov, Stability in Inverse Problems, Nauchnyi Mir, M., 2005 (in Russian) | MR | Zbl
[5] V.G. Romanov, “Local solvability of some multidimensional inverse problems for hyperbolic equations”, Differ. Equ., 25:2 (1989), 203–209 | MR | Zbl
[6] V.G. Romanov, “On solvability of inverse problems for hyperbolic equations in a class of functions analytic in part of variables”, Dokl. Akad. Nauk SSSR, 304:4 (1989), 807–811 | MR | Zbl
[7] D.K. Durdiev, Z.Z. Nuriddinov, “Determination of a multidimensional kernel in some parabolic integro–differential equation”, Journal of Siberian Federal University-Mathematics and Physics, 14:1 (2021), 117–127 | DOI | MR | Zbl
[8] Z.R. Bozorov, “The problem of determining the two-dimensional kernel of a viscoelasticity equation”, Sib. Zh. Ind. Mat., 23:1 (2020), 28–45 | DOI | MR
[9] D.K. Durdiev, A.A. Rahmonov, “The problem of determining the 2D kernel in a system of integro-differential equations of a viscoelastic porous medium”, J. Appl. Indust. Math., 14:2 (2020), 281–295 | DOI | MR
[10] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the multidimensional kernel of the viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 (in Russian) | MR | Zbl
[11] D.K. Durdiev, Zh.Sh. Safarov, “Local solvability of the problem of definition of the spatial part of the multidimensional kernel in an integro-differential equation of hyperbolic type”, Vestnik Samarsk. Gos. Univ. Ser. Fiz.-Mat. Nauki, 29:4 (2012), 37–47 (in Russian) | DOI | MR | Zbl
[12] D.K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz., Anal. Geom., 3:4 (2007), 411–423 | MR | Zbl
[13] D.K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Sib. Math. J., 35:3 (1994), 514–521 (in Russian) | DOI | MR