On centralizers of the graph automorphisms of niltriangular subalgebras of Chevalley algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 679-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

Graph automorphisms of a Chevalley group correspond to each type of reduced indecomposable root system $\Phi$, which Coxeter graph has a non-trivial symmetry. It is well-known, that a Chevalley algebra and its niltriangular subalgebra $N$ has a graph automorphism $\theta$ exaclty when $\Phi$ is of type $A_n$, $D_n$ or $E_6$. We note connections with homomorphisms of root systems introduced in 1982. The main theorem on the centralizers in $N$ of the automorphism $\theta$ gives new representations of niltriangular subalgebras, using also the unique series of unreduced indecomposable root system of type $BC_n$.
Keywords: Chevalley algebra, homomorphisms of root systems.
Mots-clés : niltriangular subalgebra
@article{JSFU_2022_15_5_a15,
     author = {Vladimir M. Levchuk and Galina S. Suleimanova},
     title = {On centralizers of the graph automorphisms of niltriangular subalgebras of {Chevalley} algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {679--682},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a15/}
}
TY  - JOUR
AU  - Vladimir M. Levchuk
AU  - Galina S. Suleimanova
TI  - On centralizers of the graph automorphisms of niltriangular subalgebras of Chevalley algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 679
EP  - 682
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a15/
LA  - en
ID  - JSFU_2022_15_5_a15
ER  - 
%0 Journal Article
%A Vladimir M. Levchuk
%A Galina S. Suleimanova
%T On centralizers of the graph automorphisms of niltriangular subalgebras of Chevalley algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 679-682
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a15/
%G en
%F JSFU_2022_15_5_a15
Vladimir M. Levchuk; Galina S. Suleimanova. On centralizers of the graph automorphisms of niltriangular subalgebras of Chevalley algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 679-682. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a15/

[1] R.W. Carter, Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl

[2] J.-P. Serre, Algebres de Lie semi-simple complexes, Benjamin, New York–Amsterdam, 1966 | MR

[3] V.M. Levchuk, G.S. Suleimanova, “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type”, Journal of Algebra, 349:1 (2012), 98–116 | DOI | MR | Zbl

[4] N. Bourbaki, Groupes et algebres de Lie, Chapt. IV–VI, Hermann, Paris, 1968 | MR | Zbl

[5] V.M. Levchuk, “Parabolic subgroups of certain $ABA$-groups”, Math. Notes, 31 (1982), 259–267 | DOI | MR | Zbl

[6] V.M. Levchuk, “Automorphisms of unipotent subgroups of Chevalley groups. I; II”, Algebra and Logic, 29:2 (1990), 97–112 ; 3, 211–224 | DOI | MR | Zbl | DOI | MR | Zbl

[7] V.M. Levchuk, “Niltriangular subalgebra of Chevalley algebra: the enveloping algebra, ideals and automorphisms”, Dokl. Math., 97:1 (2018), 23–27 | DOI | MR | Zbl

[8] V.M. Levchuk, G.S. Suleimanova, N.D. Khodyunya, “Nonassociative enveloping algebras of Chevalley algebras”, Trudy IMM URO RAN, 26, no. 3, 2020, 91–100 (in Russian) | DOI | MR

[9] G.P. Egorychev, V.M. Levchuk, G.S. Suleimanova, N.D. Khodyunya, “Enveloping algebras and ideals of niltriangular subalgebra of Chevalley algebra”, Siberian Math. J., 2022 (to appear) | MR

[10] G.B. Seligman, “On automorphisms of Lie algebras of classical type. I–III”, Trans. Amer. Math., 92 (1959 \ages 430–444) ; 94 (1960), 452–481 ; 97 (1960), 286–316 | DOI | MR | Zbl | DOI | DOI | Zbl