Some solutions of the Euler system of an inviscid incompressible fluid
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 672-678
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a system of two-dimensional Euler equations describing the motions of an inviscid incompressible fluid. It reduces to one non-linear equation with partial derivatives of the third order. A group of point transformations allowed by this equation is found. Some invariant solutions and solutions not related to invariance are constructed. The solutions found describe vortices, jet streams, and vortex-like formations.
Keywords:
vortices
Mots-clés : Euler equations, group of point transformations, invariant solutions, jets.
Mots-clés : Euler equations, group of point transformations, invariant solutions, jets.
@article{JSFU_2022_15_5_a14,
author = {Oleg V. Kaptsov},
title = {Some solutions of the {Euler} system of an inviscid incompressible fluid},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {672--678},
year = {2022},
volume = {15},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a14/}
}
TY - JOUR AU - Oleg V. Kaptsov TI - Some solutions of the Euler system of an inviscid incompressible fluid JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 672 EP - 678 VL - 15 IS - 5 UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a14/ LA - en ID - JSFU_2022_15_5_a14 ER -
Oleg V. Kaptsov. Some solutions of the Euler system of an inviscid incompressible fluid. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 672-678. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a14/
[1] G. Batchelor, An introduction to fluid dynamics, Cambridge University Press, 1970 | MR
[2] V. Andreev, O. Kaptsov, V. Pukhnachov, A. Rodionov, Applications of group-theoretical methods in hydrodynamics, Kluwer Academic Publishers, 1998 | MR | Zbl
[3] A.A. Abrashkin, E.I. Yakubovich, Vortex Dynamics in Lagrangian Description, FIZMATLIT, M., 2006 (in Russian)
[4] L. Woods, Theory of Tokamak Transport. New Aspects for Nuclear Fusion Reactor Design, Wiley-VCH, Weinheim, 2006 | Zbl
[5] L.V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, NY, 1982 | MR | Zbl
[6] Yu.V. Shan'ko, “Exact solutions of axially symmetric Euler equations”, Appl. Maths Mech., 60:3 (1996), 433–437 | DOI | MR