Two-dimensional inverse problem for an integro-differential equation of hyperbolic type
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 651-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multidimensional inverse problem of determining the kernel of the integral term of an integro-differential wave equation is considered. In the direct problem it is required to find the displacement function from the initial-boundary value problem. In the inverse problem it is required to determine the kernel of the integral term that depends on both the temporal and one spatial variable. Local unique solvability of the problem posed in the class of functions continuous in one of the variables and analytic in the other variable is proved with the use of the method of scales of Banach spaces of real analytic functions.
Keywords: integro-differential equation, inverse problem, delta function, integral equation, Banach theorem.
@article{JSFU_2022_15_5_a12,
     author = {Jurabek Sh. Safarov},
     title = {Two-dimensional inverse problem for an integro-differential equation of hyperbolic type},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {651--662},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/}
}
TY  - JOUR
AU  - Jurabek Sh. Safarov
TI  - Two-dimensional inverse problem for an integro-differential equation of hyperbolic type
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 651
EP  - 662
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/
LA  - en
ID  - JSFU_2022_15_5_a12
ER  - 
%0 Journal Article
%A Jurabek Sh. Safarov
%T Two-dimensional inverse problem for an integro-differential equation of hyperbolic type
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 651-662
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/
%G en
%F JSFU_2022_15_5_a12
Jurabek Sh. Safarov. Two-dimensional inverse problem for an integro-differential equation of hyperbolic type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 651-662. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/

[1] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional core of the equation of viscoelasticity”, Siberian Journal of Industrial Mathematics, 16:2 (2013), 72–82 (Russian) | MR | Zbl

[2] D.K. Durdiev, Zh.ShSafarov, “The inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded region”, Mat. Notes, 97:6 (2015), 855–867 | DOI | MR | Zbl

[3] J. Sh.Safarov, “One-dimensional inverse problem for the equation of viscoelasticity in a bounded region”, Journal SVMO, 17:3 (2015), 44–55 (in Russian) | Zbl

[4] J. Sh.Safarov, D.K. Durdiev, “Inverse problem for the integro-differential equation of acoustics”, Differ. equat., 54:1 (2018), 136–144 | DOI | MR | Zbl

[5] J. Sh.Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math Phys., 11:6 (2018), 753–763 | DOI | MR | Zbl

[6] L. Nirenberg, Topics in nolinear Functional Analysis, Courant institutie Math. Sci, 1974 | MR

[7] L.B. Ovsyannikov, “Singular operator in the scale of Banach spaces”, Dokl. Akad. Nauk SSSR, 163:4 (1963), 819–822 | MR

[8] V.G. Romanov, “On the local solvability of some multidimensional inverse problems for equations of hyperbolic type”, Differ. equat., 25:2 (1989), 275–284 (in Russian) | MR

[9] V.G. Romanov, “On the solvability of inverse problems for hyperbolic equations in the class of functions analytic with respect to some of the variables”, Dokl. Akad. Nauk SSSR, 304:4 (1989), 807–811 (in Russian) | MR | Zbl

[10] V.G. Romanov, “A two-dimensional inverse problem for the viscoelasticity equation”, Siberian Math. J., 53:6 (2017), 1128–1138 | DOI | MR

[11] D.K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR

[12] D.K. Durdiev, A.A. Rahmonov, “Inverse problem for the system integro-differential equation SH waves in a visco-elastic porous medium: global solubility”, Theoretical and Math Phys., 195:3 (2018), 925–940 | DOI | MR

[13] D.K. Durdiev, J. Sh.Safarov, “Local solvability of the problem of determining the spatial part of a multidimensional kernel in an integro-differential equation of hyperbolic type”, Samara State Technical University Bulletin, 4:29 (2012), 37–47 (in Russian) | DOI | MR | Zbl

[14] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of visco-elasticity equation”, Math. Met. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl