Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_5_a12, author = {Jurabek Sh. Safarov}, title = {Two-dimensional inverse problem for an integro-differential equation of hyperbolic type}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {651--662}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/} }
TY - JOUR AU - Jurabek Sh. Safarov TI - Two-dimensional inverse problem for an integro-differential equation of hyperbolic type JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 651 EP - 662 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/ LA - en ID - JSFU_2022_15_5_a12 ER -
%0 Journal Article %A Jurabek Sh. Safarov %T Two-dimensional inverse problem for an integro-differential equation of hyperbolic type %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 651-662 %V 15 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/ %G en %F JSFU_2022_15_5_a12
Jurabek Sh. Safarov. Two-dimensional inverse problem for an integro-differential equation of hyperbolic type. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 651-662. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a12/
[1] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional core of the equation of viscoelasticity”, Siberian Journal of Industrial Mathematics, 16:2 (2013), 72–82 (Russian) | MR | Zbl
[2] D.K. Durdiev, Zh.ShSafarov, “The inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded region”, Mat. Notes, 97:6 (2015), 855–867 | DOI | MR | Zbl
[3] J. Sh.Safarov, “One-dimensional inverse problem for the equation of viscoelasticity in a bounded region”, Journal SVMO, 17:3 (2015), 44–55 (in Russian) | Zbl
[4] J. Sh.Safarov, D.K. Durdiev, “Inverse problem for the integro-differential equation of acoustics”, Differ. equat., 54:1 (2018), 136–144 | DOI | MR | Zbl
[5] J. Sh.Safarov, “Global solvability of the one-dimensional inverse problem for the integro-differential equation of acoustics”, J. Sib. Fed. Univ. Math Phys., 11:6 (2018), 753–763 | DOI | MR | Zbl
[6] L. Nirenberg, Topics in nolinear Functional Analysis, Courant institutie Math. Sci, 1974 | MR
[7] L.B. Ovsyannikov, “Singular operator in the scale of Banach spaces”, Dokl. Akad. Nauk SSSR, 163:4 (1963), 819–822 | MR
[8] V.G. Romanov, “On the local solvability of some multidimensional inverse problems for equations of hyperbolic type”, Differ. equat., 25:2 (1989), 275–284 (in Russian) | MR
[9] V.G. Romanov, “On the solvability of inverse problems for hyperbolic equations in the class of functions analytic with respect to some of the variables”, Dokl. Akad. Nauk SSSR, 304:4 (1989), 807–811 (in Russian) | MR | Zbl
[10] V.G. Romanov, “A two-dimensional inverse problem for the viscoelasticity equation”, Siberian Math. J., 53:6 (2017), 1128–1138 | DOI | MR
[11] D.K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR
[12] D.K. Durdiev, A.A. Rahmonov, “Inverse problem for the system integro-differential equation SH waves in a visco-elastic porous medium: global solubility”, Theoretical and Math Phys., 195:3 (2018), 925–940 | DOI | MR
[13] D.K. Durdiev, J. Sh.Safarov, “Local solvability of the problem of determining the spatial part of a multidimensional kernel in an integro-differential equation of hyperbolic type”, Samara State Technical University Bulletin, 4:29 (2012), 37–47 (in Russian) | DOI | MR | Zbl
[14] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional matrix kernel of the system of visco-elasticity equation”, Math. Met. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl