Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 645-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider an inhomogeneous competing risks model. For the likelihood ratio statistics (LRS), proved the theorem on the locally asymptotic normality of statistical experiment.
Keywords: competing risks model, random censoring, local asymptotic normality, likelihood ratio statistics.
@article{JSFU_2022_15_5_a11,
     author = {Abdurahim A. Abdushukurov and Nargiza S. Nurmukhamedova},
     title = {Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {645--650},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/}
}
TY  - JOUR
AU  - Abdurahim A. Abdushukurov
AU  - Nargiza S. Nurmukhamedova
TI  - Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 645
EP  - 650
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/
LA  - en
ID  - JSFU_2022_15_5_a11
ER  - 
%0 Journal Article
%A Abdurahim A. Abdushukurov
%A Nargiza S. Nurmukhamedova
%T Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 645-650
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/
%G en
%F JSFU_2022_15_5_a11
Abdurahim A. Abdushukurov; Nargiza S. Nurmukhamedova. Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 645-650. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/

[1] A. Abdushukurov, Estimation of unknown distributions from incomplete observations and their properties, LAP. LAMBERT Academic Publishing, 2011 (in Russian)

[2] A. Abdushukurov, N. Nurmuhamedova, “Locally asymptotically normality of the family of distributions by incomplete observations”, Journal of Siberian Federal University. Mathematics Physics, 7 (2014), 141–154 | Zbl

[3] I. Ibragimov, R. Khas'minskii, Statistical Estimation: Asymptotic Theory, Springer-Verlag, New York, 1981 | MR | Zbl

[4] R. Liptser, A. Shiryayev, Theory of Martingales, Springer, 1989 | MR

[5] R. Rebolledo, “Central limit theorem for local martingales”, Z. Wahrscheinlich. verw. Gebiete, 51 (1980), 269–280 | DOI | MR