Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 645-650 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider an inhomogeneous competing risks model. For the likelihood ratio statistics (LRS), proved the theorem on the locally asymptotic normality of statistical experiment.
Keywords: competing risks model, random censoring, local asymptotic normality, likelihood ratio statistics.
@article{JSFU_2022_15_5_a11,
     author = {Abdurahim A. Abdushukurov and Nargiza S. Nurmukhamedova},
     title = {Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {645--650},
     year = {2022},
     volume = {15},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/}
}
TY  - JOUR
AU  - Abdurahim A. Abdushukurov
AU  - Nargiza S. Nurmukhamedova
TI  - Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 645
EP  - 650
VL  - 15
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/
LA  - en
ID  - JSFU_2022_15_5_a11
ER  - 
%0 Journal Article
%A Abdurahim A. Abdushukurov
%A Nargiza S. Nurmukhamedova
%T Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 645-650
%V 15
%N 5
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/
%G en
%F JSFU_2022_15_5_a11
Abdurahim A. Abdushukurov; Nargiza S. Nurmukhamedova. Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 645-650. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a11/

[1] A. Abdushukurov, Estimation of unknown distributions from incomplete observations and their properties, LAP. LAMBERT Academic Publishing, 2011 (in Russian)

[2] A. Abdushukurov, N. Nurmuhamedova, “Locally asymptotically normality of the family of distributions by incomplete observations”, Journal of Siberian Federal University. Mathematics Physics, 7 (2014), 141–154 | Zbl

[3] I. Ibragimov, R. Khas'minskii, Statistical Estimation: Asymptotic Theory, Springer-Verlag, New York, 1981 | MR | Zbl

[4] R. Liptser, A. Shiryayev, Theory of Martingales, Springer, 1989 | MR

[5] R. Rebolledo, “Central limit theorem for local martingales”, Z. Wahrscheinlich. verw. Gebiete, 51 (1980), 269–280 | DOI | MR