Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_5_a10, author = {Mohammad Shahryari}, title = {Dehn functions and the space of marked groups}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {641--644}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/} }
TY - JOUR AU - Mohammad Shahryari TI - Dehn functions and the space of marked groups JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 641 EP - 644 VL - 15 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/ LA - en ID - JSFU_2022_15_5_a10 ER -
Mohammad Shahryari. Dehn functions and the space of marked groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 641-644. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/
[1] N. Brady, M.R. Bridson, “There is only one gap in the isoperimetric spectrum”, Geometric and Functional Analysis, 10:5 (2000), 1053–1070 | DOI | MR | Zbl
[2] C. Champtier, V. Guirardel, “Limit groups as limits of free groups”, Israel J. Math., 146:1 (2004), 1–75 | DOI | MR
[3] S.M. Gresten, “Isoperimetric and isodiametric functions of finite presentations”, Geometric Group Theory, London Math. Soc. Lecture Notes, 181, 1991, 79–96 | MR
[4] R.I. Grigorchuk, S.V. Ivanov, “On Dehn Functions of Infinite Presentations of Groups”, Geometric and Functional Analysis, 18:6 (2009), 1841–1874 | DOI | MR | Zbl
[5] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR
[6] A. Yu.Olshanskii, “Hyperbolicity of groups with subquadratic isoperipetric inequality”, International J. Algebra and Computations, 1:3 (1991), 281–289 | DOI | MR | Zbl
[7] M. Sapir, J.C. Birget, E. Rips, “Isoperimetric and isodiametric functions of groups”, Annals of Math., 181 (2001), 345–366 | DOI | MR