Dehn functions and the space of marked groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 641-644.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of marked group, we suppose that a sequence $(G_i, X_i)$ converges to $(G,X)$, where $G$ is finitely presented. We obtain an inequality which connects Dehn functions of $G_i$s and $G$.
Keywords: space of marked groups, Gromov-Grigorchuk metric, finitely presented groups, Dehn functions.
@article{JSFU_2022_15_5_a10,
     author = {Mohammad Shahryari},
     title = {Dehn functions and the space of marked groups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {641--644},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/}
}
TY  - JOUR
AU  - Mohammad Shahryari
TI  - Dehn functions and the space of marked groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 641
EP  - 644
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/
LA  - en
ID  - JSFU_2022_15_5_a10
ER  - 
%0 Journal Article
%A Mohammad Shahryari
%T Dehn functions and the space of marked groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 641-644
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/
%G en
%F JSFU_2022_15_5_a10
Mohammad Shahryari. Dehn functions and the space of marked groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 641-644. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a10/

[1] N. Brady, M.R. Bridson, “There is only one gap in the isoperimetric spectrum”, Geometric and Functional Analysis, 10:5 (2000), 1053–1070 | DOI | MR | Zbl

[2] C. Champtier, V. Guirardel, “Limit groups as limits of free groups”, Israel J. Math., 146:1 (2004), 1–75 | DOI | MR

[3] S.M. Gresten, “Isoperimetric and isodiametric functions of finite presentations”, Geometric Group Theory, London Math. Soc. Lecture Notes, 181, 1991, 79–96 | MR

[4] R.I. Grigorchuk, S.V. Ivanov, “On Dehn Functions of Infinite Presentations of Groups”, Geometric and Functional Analysis, 18:6 (2009), 1841–1874 | DOI | MR | Zbl

[5] M. Gromov, “Groups of polynomial growth and expanding maps”, Inst. Hautes Etudes Sci. Publ. Math., 53 (1981), 53–73 | DOI | MR

[6] A. Yu.Olshanskii, “Hyperbolicity of groups with subquadratic isoperipetric inequality”, International J. Algebra and Computations, 1:3 (1991), 281–289 | DOI | MR | Zbl

[7] M. Sapir, J.C. Birget, E. Rips, “Isoperimetric and isodiametric functions of groups”, Annals of Math., 181 (2001), 345–366 | DOI | MR