Uniqueness of an interpolating entire function with some properties
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 555-558.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of power series analytic continuation by coefficients interpolation by entire or meromorphic functions. We prove uniqueness of an interpolating function with some properties. Also, under assumptions of Polya`s theorem about extendability of the sum of power series to the whole complex plane, except, possibly, some boundary arc, we find at least one singular point location.
Keywords: power series, analytic continuation, indicator function.
@article{JSFU_2022_15_5_a0,
     author = {Aleksandr J. Mkrtchyan},
     title = {Uniqueness of an interpolating entire function with some properties},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {555--558},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a0/}
}
TY  - JOUR
AU  - Aleksandr J. Mkrtchyan
TI  - Uniqueness of an interpolating entire function with some properties
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 555
EP  - 558
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a0/
LA  - en
ID  - JSFU_2022_15_5_a0
ER  - 
%0 Journal Article
%A Aleksandr J. Mkrtchyan
%T Uniqueness of an interpolating entire function with some properties
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 555-558
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a0/
%G en
%F JSFU_2022_15_5_a0
Aleksandr J. Mkrtchyan. Uniqueness of an interpolating entire function with some properties. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 5, pp. 555-558. http://geodesic.mathdoc.fr/item/JSFU_2022_15_5_a0/

[1] L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin, 1955 | MR | Zbl

[2] N. Arakelian, V. Martirosyan, Power series: Analytic continuation and location of singularities, University Press, Yerevan, 1991

[3] E.L. Lindelöf, Le calcul des résidus et ses applications à la théori des fonctions, Gauthier-Villars, 1905 | MR

[4] E. Le Roy, “Sur les séries divergentes et les fonctions définies par un développement de Taylor”, Annales de la Faculté des sciences de Toulouse: Mathématiques, 2:3 (1900), 317–384 | MR

[5] L.I. Ronkin, “Introduction to the theory of entire functions of several variables”, American Mathematical Soc., 44 (1974) | MR | Zbl

[6] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Mathematische Zeitschrift, 29 (1929), 549–640 | DOI | MR | Zbl

[7] A. Mkrtchyan, “Analytic continuation of power series by means of interpolating the coefficients by meromorphic functions”, Journal of Siberian Federal University, Mathematics Physics, 8:2 (2015), 173–183 | DOI | MR | Zbl

[8] F. Carlson, Sur une classe de series de Taylor, Thesis, Uppsala, Sweden, 1914 | Zbl