Compact MacCormac-type schemes applied for atmospheric escape problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 500-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article discusses the advantages of the compact MacCormack-type scheme over its original version when modeling the hydrodynamic outflow of planetary atmospheres caused by the absorption of ultraviolet radiation from the Sun in the upper atmosphere. The results of calculations with different parameters of the problem are presented.
Keywords: MacCormack-type method, compact difference scheme , planetary atmospheres, intensity of atmospheric loss.
@article{JSFU_2022_15_4_a8,
     author = {Kseniya D. Gorbunova and Nikolai V. Erkaev},
     title = {Compact {MacCormac-type} schemes applied for atmospheric escape problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {500--509},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a8/}
}
TY  - JOUR
AU  - Kseniya D. Gorbunova
AU  - Nikolai V. Erkaev
TI  - Compact MacCormac-type schemes applied for atmospheric escape problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 500
EP  - 509
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a8/
LA  - en
ID  - JSFU_2022_15_4_a8
ER  - 
%0 Journal Article
%A Kseniya D. Gorbunova
%A Nikolai V. Erkaev
%T Compact MacCormac-type schemes applied for atmospheric escape problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 500-509
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a8/
%G en
%F JSFU_2022_15_4_a8
Kseniya D. Gorbunova; Nikolai V. Erkaev. Compact MacCormac-type schemes applied for atmospheric escape problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 500-509. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a8/

[1] R.W.MacCormack, The effect of viscosity in hypervelocity impact cratering, AIAA Paper 69–354, 1969

[2] R.W.MacCormack, “Lecture notes in physics”, Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, 1971

[3] D.Gottlieb, E.Turkel, “Dissipative Two-Four Method for Time Dependent Problems”, Mathematics of Computation, 30(136) (1976)

[4] S.K.Lele, “Compact Finite Difference Schemes with Spectral-like Resolution”, Journal of Computational Physics, 103:1 (1992)

[5] Z.Haras, S.Ta'asan, “Finite difference schemes for long-time integration”, Journal of Computational Physics, 114:2 (1994)

[6] J.W.Kim, D.J.Lee, “Optimized compact finite difference schemes with maximum resolution”, AIAA journal, 34:5 (1996), 887–893 | DOI

[7] S.T.Yu, K.C.Hsieh, Y.L.P.Tsai, “Simulating waves in flows by Runge-Kutta and compact difference schemes”, AIAA journal, 33:3 (1995) | DOI

[8] R.Agarwal, K.Huh, A dispersion-relation preserving fourth-order compact time-domain/frequency-domain finite-volume method for computational acoustics, AIAA Paper 96–0277, 1996 | DOI

[9] C.K.W.Tam, J.C.Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics”, Journal of computational physics, 107:2 (1993)

[10] D.Zingg, H.Lomax, H.Jurgens, An optimized finite-difference scheme for wave propagation problems, AIAA Paper 93–0459, 1993

[11] C.A.Kennedy, M.H.Carpenter, “Several new numerical methods for compressible shear-layer simulations”, Applied Numerical Mathematics, 14:4 (1994)

[12] R.Hixon, On Increasing the Accuracy of MacCormack Schemes for Aeroacoustic Applications, AIAA Paper 97–1586, 1997

[13] R.Hixon, E.Turkel, High-accuracy compact MacCormack-type schemes for computational aeroacoustics, AIAA Paper 98–0365, 1998

[14] R.Hixon, E.Turkel, “Compact Implicit MacCormack-Type Schemes with High Accuracy”, Journal of Computational Physics, 158 (2000)

[15] S.A.Jordan, “Optimization, resolution and application of composite compact finite difference templates”, Applied numerical mathematics, 61:1 (2011) | DOI

[16] S.Yazdani, D.R.Hixon, N.Mansouri, Hybrid MacCormack-type Schemes for Computational Aeroacoustics, AIAA Paper 2015–3134, 2015 | DOI

[17] A.Rona, I.Spisso, et al., “Optimised prefactored compact schemes for linear wave propagation phenomena”, Journal of Computational Physics, 138 (2017) | DOI

[18] R.Ciegis, O.Suboc, “High order compact finite difference schemes on nonuniform grids”, Applied Numerical Mathematics, 132 (2018) | DOI

[19] N.V.Erkaev, H.Lammer, et al., “XUV exposed non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: Atmospheric expansion and thermal escape”, Astrobiology Journal, 13:11 (2013), 1011–1029 | DOI

[20] N.V.Erkaev, H.Lammer, et al., “EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance”, Monthly Notices of the Royal Astronomical Society, 460:2 (2016) | DOI

[21] R.Hixon, “A New Class of Compact Schemes”, 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998