Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_4_a4, author = {Akbar R. Safarov}, title = {Estimates for {Mittag-Leffler} functions with smooth phase depending on two variables}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {459--466}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/} }
TY - JOUR AU - Akbar R. Safarov TI - Estimates for Mittag-Leffler functions with smooth phase depending on two variables JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 459 EP - 466 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/ LA - en ID - JSFU_2022_15_4_a4 ER -
%0 Journal Article %A Akbar R. Safarov %T Estimates for Mittag-Leffler functions with smooth phase depending on two variables %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 459-466 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/ %G en %F JSFU_2022_15_4_a4
Akbar R. Safarov. Estimates for Mittag-Leffler functions with smooth phase depending on two variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 459-466. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/
[1] M.Ruzhansky, B.Torebek, Van der Corput lemmas for Mittag-Leffler functions, arXiv: 2002.07492
[2] M.Ruzhansky, B.Torebek, “Van der Corput lemmas for Mittag-Leffler functions. II. $\alpha$-directions”, Bull. Sci. Math., 171 (2021), 103016
[3] M.G.Mittag-Leffler, “Sur l'intégrale de Laplace-Abel”, C. R. Acad. Sci. Paris, 135 (1902), 937–939
[4] M.G.Mittag-Leffler, “Sur la nouvelle fonction $E_{\alpha}(x)$”, Comp. Rend. Acad. Sci. Paris, 137 (1903), 554–558
[5] M.G.Mittag-Leffler, “Sopra la funzione $E_{\alpha}(x)$”, Rend. R. Acc. Lincei, 5:13 (1904), 3–5
[6] P.Humbert, “Quelques résultats relatifs à la fonction de Mittag-Leffler”, C. R. Acad. Sci. Paris, 236 (1953), 1467–1468
[7] R.P.Agarwal, “A propos d'une note de M.Pierre Humbert”, C. R. Acad. Sci. Paris, 236 (1953), 2031–2032
[8] P.Humbert, R.P.Agarwal, “Sur la fonction de Mittag-Leffler et quelquenes de ses génèralisationes”, Bull. Sci. Math., Ser. II, 77 (1953), 180–185
[9] M.M.Dzherbashyan, “On the asymtotic expansion of a function of Mittag-Leffler type”, Akad. Nauk Armjan. SSR Doklady, 19 (1954), 65–72 (in Russian)
[10] M.M.Dzherbashyan, “On integral representation of functions continuous on given rays (generalization of the Fourier integrals)”, Izvestija Akad. Nauk SSSR. Ser. Mat., 18 (1954), 427–448 (in Russian)
[11] M.M.Dzherbashyan, “On Abelian summation of the eneralized integral transform”, Akad. Nauk Armjan. SSR Izvestija, fiz-mat. estest. techn. nauki, 7:6 (1954), 1–26 (in Russian)
[12] R.Gorenflo, A. Kilbas, F.Mainardi, S.Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2014
[13] K.G. van der Corput, “Zur Methode der stationaren phase”, Compositio Math., 1 (1934), 15–38
[14] G.I.Arkhipov, A.A.Karatsuba, V.N.Chubarikov, Theory of multiple trigonometric sums, Nauka, M., 1987
[15] A.N.Varchenko, “Newton polyhedra and estimation of oscillating integrals”, Functional Analysis and Its Applications, 10 (1976), 175–196
[16] J.Duistermaat, “Oscillatory integrals Lagrange immersions and unifoldings of singularities”, Comm. Pure. Appl. Math., 27:2 (1974), 207–281
[17] V.N.Karpushkin, “Uniform estimates for oscillatory integrals with parabolic or hyperbolic phase”, Tr. Seminara im. I. G. Petrovskogo, 9, Izd-vo MGU, M., 1983, 3–39 (in Russian)
[18] A.Safarov, “Invariant estimates of two-dimensional oscillatory integrals”, Math. Notes, 104 (2018), 293–302
[19] A.Safarov, “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys., 9 (2016), 102–107 | DOI
[20] V.I.Arnold, S.M.Gusein-Zade, A.N.Varchenko, Singularities of Differentiable Maps, Birkhauser, Boston–Basel–Stuttgart, 1985
[21] I.Podlubny, Fractional Differensial Equations, Academic Press, New York, 1999