Estimates for Mittag-Leffler functions with smooth phase depending on two variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 459-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem on estimates for Mittag-Leffler functions with the smooth phase functions of two variables having singularities of type $D_{\infty} $, $D_{4}^{\pm}$ and $A_{r}$. The generalisation is that we replace the exponential function with the Mittag–Leffler-type function, to study oscillatory type integrals. We extend results of paper [1] and [2] to two-dimensional integrals with phase having some simple singularities.
Keywords: Mittag–Leffler functions, phase function
Mots-clés : amplitude.
@article{JSFU_2022_15_4_a4,
     author = {Akbar R. Safarov},
     title = {Estimates for {Mittag-Leffler} functions with smooth phase depending on two variables},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {459--466},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/}
}
TY  - JOUR
AU  - Akbar R. Safarov
TI  - Estimates for Mittag-Leffler functions with smooth phase depending on two variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 459
EP  - 466
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/
LA  - en
ID  - JSFU_2022_15_4_a4
ER  - 
%0 Journal Article
%A Akbar R. Safarov
%T Estimates for Mittag-Leffler functions with smooth phase depending on two variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 459-466
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/
%G en
%F JSFU_2022_15_4_a4
Akbar R. Safarov. Estimates for Mittag-Leffler functions with smooth phase depending on two variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 459-466. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a4/

[1] M.Ruzhansky, B.Torebek, Van der Corput lemmas for Mittag-Leffler functions, arXiv: 2002.07492

[2] M.Ruzhansky, B.Torebek, “Van der Corput lemmas for Mittag-Leffler functions. II. $\alpha$-directions”, Bull. Sci. Math., 171 (2021), 103016

[3] M.G.Mittag-Leffler, “Sur l'intégrale de Laplace-Abel”, C. R. Acad. Sci. Paris, 135 (1902), 937–939

[4] M.G.Mittag-Leffler, “Sur la nouvelle fonction $E_{\alpha}(x)$”, Comp. Rend. Acad. Sci. Paris, 137 (1903), 554–558

[5] M.G.Mittag-Leffler, “Sopra la funzione $E_{\alpha}(x)$”, Rend. R. Acc. Lincei, 5:13 (1904), 3–5

[6] P.Humbert, “Quelques résultats relatifs à la fonction de Mittag-Leffler”, C. R. Acad. Sci. Paris, 236 (1953), 1467–1468

[7] R.P.Agarwal, “A propos d'une note de M.Pierre Humbert”, C. R. Acad. Sci. Paris, 236 (1953), 2031–2032

[8] P.Humbert, R.P.Agarwal, “Sur la fonction de Mittag-Leffler et quelquenes de ses génèralisationes”, Bull. Sci. Math., Ser. II, 77 (1953), 180–185

[9] M.M.Dzherbashyan, “On the asymtotic expansion of a function of Mittag-Leffler type”, Akad. Nauk Armjan. SSR Doklady, 19 (1954), 65–72 (in Russian)

[10] M.M.Dzherbashyan, “On integral representation of functions continuous on given rays (generalization of the Fourier integrals)”, Izvestija Akad. Nauk SSSR. Ser. Mat., 18 (1954), 427–448 (in Russian)

[11] M.M.Dzherbashyan, “On Abelian summation of the eneralized integral transform”, Akad. Nauk Armjan. SSR Izvestija, fiz-mat. estest. techn. nauki, 7:6 (1954), 1–26 (in Russian)

[12] R.Gorenflo, A. Kilbas, F.Mainardi, S.Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2014

[13] K.G. van der Corput, “Zur Methode der stationaren phase”, Compositio Math., 1 (1934), 15–38

[14] G.I.Arkhipov, A.A.Karatsuba, V.N.Chubarikov, Theory of multiple trigonometric sums, Nauka, M., 1987

[15] A.N.Varchenko, “Newton polyhedra and estimation of oscillating integrals”, Functional Analysis and Its Applications, 10 (1976), 175–196

[16] J.Duistermaat, “Oscillatory integrals Lagrange immersions and unifoldings of singularities”, Comm. Pure. Appl. Math., 27:2 (1974), 207–281

[17] V.N.Karpushkin, “Uniform estimates for oscillatory integrals with parabolic or hyperbolic phase”, Tr. Seminara im. I. G. Petrovskogo, 9, Izd-vo MGU, M., 1983, 3–39 (in Russian)

[18] A.Safarov, “Invariant estimates of two-dimensional oscillatory integrals”, Math. Notes, 104 (2018), 293–302

[19] A.Safarov, “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys., 9 (2016), 102–107 | DOI

[20] V.I.Arnold, S.M.Gusein-Zade, A.N.Varchenko, Singularities of Differentiable Maps, Birkhauser, Boston–Basel–Stuttgart, 1985

[21] I.Podlubny, Fractional Differensial Equations, Academic Press, New York, 1999