Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 444-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations describing the flow of a one-dimensional barotropic perfect gas are considered in this paper. Conservation laws of a special kind were found for these equations. The Cauchy problem is reduced to several quadratures along a curve on which boundary conditions are set using these conservation laws.
Keywords: one-dimensional barotropic perfect gas, Cauchy problem, conservation laws.
@article{JSFU_2022_15_4_a2,
     author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova},
     title = {Numerical-and-analytic method for solving {Cauchy} problem of one-dimensional gas dynamics},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {444--449},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/}
}
TY  - JOUR
AU  - Sergei I. Senashov
AU  - Irina L. Savostyanova
AU  - Olga N. Cherepanova
TI  - Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 444
EP  - 449
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/
LA  - en
ID  - JSFU_2022_15_4_a2
ER  - 
%0 Journal Article
%A Sergei I. Senashov
%A Irina L. Savostyanova
%A Olga N. Cherepanova
%T Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 444-449
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/
%G en
%F JSFU_2022_15_4_a2
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 444-449. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/

[1] V.V.Shemarulin, Differential geometric properties of equations of one-dimensional isentropic gas dynamics, FGUP RFYAC-VNIIEF, Sarov, 2015 (in Russian)

[2] P.P.Kiryakov, S.I.Senashov, A.I.Yakhno, Application of symmetry and conservation laws to the solution of differential equations, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2001 (in Russian)

[3] S.I.Senashov, A.M.Vinogradov, “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburg Math. Soc., 3:2 (1988), 415–439

[4] S.I.Senashov, “On the laws of conservation of plasticity equations”, Reports of the USSR Academy of Sciences, 320 (1991), 606–608 (in Russian)

[5] L.G.Loitsyansky, Mechanics of liquid and gas, Nauka, M., 1973 (in Russian)