Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_4_a2, author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova}, title = {Numerical-and-analytic method for solving {Cauchy} problem of one-dimensional gas dynamics}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {444--449}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/} }
TY - JOUR AU - Sergei I. Senashov AU - Irina L. Savostyanova AU - Olga N. Cherepanova TI - Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 444 EP - 449 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/ LA - en ID - JSFU_2022_15_4_a2 ER -
%0 Journal Article %A Sergei I. Senashov %A Irina L. Savostyanova %A Olga N. Cherepanova %T Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 444-449 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/ %G en %F JSFU_2022_15_4_a2
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Numerical-and-analytic method for solving Cauchy problem of one-dimensional gas dynamics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 444-449. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a2/
[1] V.V.Shemarulin, Differential geometric properties of equations of one-dimensional isentropic gas dynamics, FGUP RFYAC-VNIIEF, Sarov, 2015 (in Russian)
[2] P.P.Kiryakov, S.I.Senashov, A.I.Yakhno, Application of symmetry and conservation laws to the solution of differential equations, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2001 (in Russian)
[3] S.I.Senashov, A.M.Vinogradov, “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburg Math. Soc., 3:2 (1988), 415–439
[4] S.I.Senashov, “On the laws of conservation of plasticity equations”, Reports of the USSR Academy of Sciences, 320 (1991), 606–608 (in Russian)
[5] L.G.Loitsyansky, Mechanics of liquid and gas, Nauka, M., 1973 (in Russian)