On the nonparametric estimation of the functional regression based on censored data under strong mixing condition
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 523-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we are concerned with local linear nonparametric estimation of the regression function in the censorship model when the covariates take values in a semimetric space. Then, we establish the pointwise almost-complete convergence, with rate, of the proposed estimator when the sample is a strong mixing sequence. To lend further support to our theoretical results, a simulation study is carried out to illustrate the good accuracy of the studied method.
Keywords: functional data, censored data, locally modeled regression, almost-complete convergence, strong mixing.
@article{JSFU_2022_15_4_a10,
     author = {Farid Leulmi and Sara Leulmi and Soumia Kharfouchi},
     title = {On the nonparametric estimation of the functional regression based on censored data under strong mixing condition},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {523--536},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a10/}
}
TY  - JOUR
AU  - Farid Leulmi
AU  - Sara Leulmi
AU  - Soumia Kharfouchi
TI  - On the nonparametric estimation of the functional regression based on censored data under strong mixing condition
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 523
EP  - 536
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a10/
LA  - en
ID  - JSFU_2022_15_4_a10
ER  - 
%0 Journal Article
%A Farid Leulmi
%A Sara Leulmi
%A Soumia Kharfouchi
%T On the nonparametric estimation of the functional regression based on censored data under strong mixing condition
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 523-536
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a10/
%G en
%F JSFU_2022_15_4_a10
Farid Leulmi; Sara Leulmi; Soumia Kharfouchi. On the nonparametric estimation of the functional regression based on censored data under strong mixing condition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 4, pp. 523-536. http://geodesic.mathdoc.fr/item/JSFU_2022_15_4_a10/

[1] L.Ait Hennania, M.Lemdania, E.Ould Said, “Robust regression analysis for a censored response and functional regressors”, Journal of Nonparametric Statistics, 31:1 (2018), 221–243

[2] J.Barrientos-Marin, F.Ferraty, P.Vieu, “Locally modelled regression and functional data”, Journal of Nonparametric Statistics, 22:5 (2010), 617–632 | DOI

[3] A.Benkhaled, F.Madani, S.Khardani, “Strong consistenand cy of local linear estimation of a conditional density function under random censorship”, Arabian Journal of Mathematics, 9 (2020), 513–529 | DOI

[4] A.Bouchentouf, A.Hamza, A.Rabhi, “Strong uniform consistency rates of conditional hazard estimation in the single functional index model for dependant functional data under random censorship”, International Journal of Statistics and Economic, 18 (2017), 82–101

[5] Z.Cai, “Estimating a distribution function for censored time series data”, Journal of Multivariate Analysis, 78 (2001), 299–318

[6] J.Demongeot, A.Laksaci, F.Madani, M.Rachdi, “Functional data: local linear estimation of the conditional density and its application”, Statistics, 47:1 (2013), 26–44

[7] F.Ferraty, P.Vieu, Nonparametric functional data analysis. Theory and Practice, Springer Series in Statistics, New York, 2006

[8] Z.Guessoum, E. Ould Said, “On nonparametric estimation of the regression function under random censorship model”, Statistics $\$ Decisions, 26 (2008), 159–177

[9] E. M.Kaplan, P.Meier, “Nonparametric estimation from incomplete observations”, Journal of the American Statistical Association, 53 (1958), 457–481

[10] S.Leulmi, “Local linear estimation of the conditional quantile for censored data and functional regressors”, Communications in Statistics – Theory and Methods, 50 (2019), 1–15 | DOI

[11] S.Leulmi, “Nonparametric local linear regression estimation for censored data and functional regressors”, Journal of the Korean Statistical Society, 2020, 1–22

[12] S.Leulmi, F.Messaci, “Local linear estimation of a generalized regression function with functional dependent data”, Communications in Statistics – Theory and Methods, 47:23 (2018), 5795–5811

[13] S.Leulmi, F.Messaci, “A class of local linear estimators with functional data”, J. Sib. Fed. Univ. Math. Phys., 12:3 (2019), 379–391 | DOI

[14] Z.Lin, C.Lu, Limit theory of mixing dependent random variables.Mathematics and its applications, Sciences Press, Kluwer Academic Publishers, Beijing, 1996

[15] N.Ling, Y.Liu, “The kernel regression estimation for randomly censored functional stationary ergodic data”, Communications in Statistics-Theory and Methods, 2016 | DOI

[16] B.Mechab, N.Hamidi, S.Benaissa, “Nonparametric estimation of the relative error in functional regression and censored data”, Chilean Journal of Statistics, 10:2 (2019), 177–195

[17] F.Messaci, N.Nemouchi, I.Ouassou, M.Rachdi, “Local polynomial modelling of the conditional quantile for functional data”, Statistical Methods $\$ Applications, 24:4 (2015), 597–622

[18] N.Rouabah, N.Nemouchi, F.Messaci, “A rate of consistency for nonparametric estimators of the distribution function based on censored dependent data”, Statistical Methods $\$ Applications, 28 (2019), 259–280 | DOI