Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \ applications to integral equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 343-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish some results on the existence and uniqueness of coupled common fixed point theorems in partially ordered $A_b$-metric spaces. Examples have been provided to justify the relevance of the results obtained through the analysis of extant theorem. Further, we also find application to integral equations via fixed point theorems in $A_b$-metric spaces.
Keywords: сoupled fixed point, mixed weakly monotone property, $A_b$-metric space, integral equation.
@article{JSFU_2022_15_3_a7,
     author = {K. Ravibabu and G. N. V. Kishore and Ch. Srinivasa Rao and Ch. Raghavendra Naidu},
     title = {Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {343--355},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/}
}
TY  - JOUR
AU  - K. Ravibabu
AU  - G. N. V. Kishore
AU  - Ch. Srinivasa Rao
AU  - Ch. Raghavendra Naidu
TI  - Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 343
EP  - 355
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/
LA  - en
ID  - JSFU_2022_15_3_a7
ER  - 
%0 Journal Article
%A K. Ravibabu
%A G. N. V. Kishore
%A Ch. Srinivasa Rao
%A Ch. Raghavendra Naidu
%T Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 343-355
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/
%G en
%F JSFU_2022_15_3_a7
K. Ravibabu; G. N. V. Kishore; Ch. Srinivasa Rao; Ch. Raghavendra Naidu. Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 343-355. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/

[1] M. Abbas, B. Ali, Y.I. Suleiman, “Generalized coupled common fixed point results in partially ordered A-metric spaces”, Fixed point theory Appl., 64:2015 | DOI | MR

[2] I.A. Bakhtin, “The contraction mapping principle in almost metric space”, Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, 1989, 26–37 (in Russian) | MR

[3] Juzef Banas, Donal O'Regan, “On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order”, J. Math. Anal. Appl., 345:1 (2008), 573–582 | DOI | MR

[4] M. Bousselsal, M. Laid Kadri, “Coupled Coincidence point for generalized monotone operators in partially ordered metric spaces”, Thai Journal of Mathematics, 15:2 (2017), 367–385 | MR | Zbl

[5] Nguyen Van Dung, “On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces”, Fixed Point Theory and Applications, 48 (2013), 1–17 | DOI | MR

[6] T. Gnana Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65 (2006), 1379–1393 | DOI | MR | Zbl

[7] M.E. Gordji, E. Akbartabar, Y.J. Cho, M. Ramezani, “Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces”, Fixed point theory and Appl., 95 (2012) | DOI | MR | Zbl

[8] E. Karapinar, P. Kumam, W. Sintunavarat, “Coupled fixed point theorems in cone metric spaces with a c-distance and applications”, Fixed Point Theory and Appl., 194 (2012) | DOI | MR | Zbl

[9] E. Karapinar, P. Kumam, I. Erhan, “Coupled fixed points on partially ordered G-metric spaces”, Fixed Point Theory and Appl., 2012 (2012), 174 | DOI | MR | Zbl

[10] P. Kumam, V. Pragadeeswarar, M. Marudai, K. Sitthithakerngkiet, “Coupled Best Proximity Points in Ordered Metric Spaces”, Fixed Point Theory and Appl., 107 (2014) | DOI | MR | Zbl

[11] N. Mlaiki, Y. Rohen, “Some coupled fixed point theorem in partially ordered $A_b$-metric spaces”, J. Nonlinear. Sci. Appl., 10 (2017), 1731–1743 | DOI | MR | Zbl

[12] K. Ravibabu, Ch.Srinivasarao, Ch.Raghavendra Naidu, “Coupled Fixed point and coincidence point theorems for generalized contractions in metric spaces with a partial order”, Italian Journal of pure and applied mathematics, 39 (2018), 434–450 | MR | Zbl

[13] K. Ravibabu, Ch.Srinivasarao, Ch. Ragavendra naidu, “Applications to Integral Equations with Coupled Fixed Point Theorems in Ab-Metric Space”, Thai Journal of Mathematics, 2018, 148–167 | MR | Zbl

[14] M. Ughade, D. Turkoglu, S.R. Singh, R.D. Daheriya, “Some fixed point theorems in $A_b$-metric space”, British J. Math. Comput. Sci., 19 (2016), 1–24 | DOI