Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a7, author = {K. Ravibabu and G. N. V. Kishore and Ch. Srinivasa Rao and Ch. Raghavendra Naidu}, title = {Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {343--355}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/} }
TY - JOUR AU - K. Ravibabu AU - G. N. V. Kishore AU - Ch. Srinivasa Rao AU - Ch. Raghavendra Naidu TI - Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 343 EP - 355 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/ LA - en ID - JSFU_2022_15_3_a7 ER -
%0 Journal Article %A K. Ravibabu %A G. N. V. Kishore %A Ch. Srinivasa Rao %A Ch. Raghavendra Naidu %T Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 343-355 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/ %G en %F JSFU_2022_15_3_a7
K. Ravibabu; G. N. V. Kishore; Ch. Srinivasa Rao; Ch. Raghavendra Naidu. Coupled fixed point theorems via mixed monotone property in $A_b$-metric spaces \& applications to integral equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 343-355. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a7/
[1] M. Abbas, B. Ali, Y.I. Suleiman, “Generalized coupled common fixed point results in partially ordered A-metric spaces”, Fixed point theory Appl., 64:2015 | DOI | MR
[2] I.A. Bakhtin, “The contraction mapping principle in almost metric space”, Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, 1989, 26–37 (in Russian) | MR
[3] Juzef Banas, Donal O'Regan, “On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order”, J. Math. Anal. Appl., 345:1 (2008), 573–582 | DOI | MR
[4] M. Bousselsal, M. Laid Kadri, “Coupled Coincidence point for generalized monotone operators in partially ordered metric spaces”, Thai Journal of Mathematics, 15:2 (2017), 367–385 | MR | Zbl
[5] Nguyen Van Dung, “On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces”, Fixed Point Theory and Applications, 48 (2013), 1–17 | DOI | MR
[6] T. Gnana Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Anal., 65 (2006), 1379–1393 | DOI | MR | Zbl
[7] M.E. Gordji, E. Akbartabar, Y.J. Cho, M. Ramezani, “Coupled common fixed point theorems for mixed weakly monotone mappings in partially ordered metric spaces”, Fixed point theory and Appl., 95 (2012) | DOI | MR | Zbl
[8] E. Karapinar, P. Kumam, W. Sintunavarat, “Coupled fixed point theorems in cone metric spaces with a c-distance and applications”, Fixed Point Theory and Appl., 194 (2012) | DOI | MR | Zbl
[9] E. Karapinar, P. Kumam, I. Erhan, “Coupled fixed points on partially ordered G-metric spaces”, Fixed Point Theory and Appl., 2012 (2012), 174 | DOI | MR | Zbl
[10] P. Kumam, V. Pragadeeswarar, M. Marudai, K. Sitthithakerngkiet, “Coupled Best Proximity Points in Ordered Metric Spaces”, Fixed Point Theory and Appl., 107 (2014) | DOI | MR | Zbl
[11] N. Mlaiki, Y. Rohen, “Some coupled fixed point theorem in partially ordered $A_b$-metric spaces”, J. Nonlinear. Sci. Appl., 10 (2017), 1731–1743 | DOI | MR | Zbl
[12] K. Ravibabu, Ch.Srinivasarao, Ch.Raghavendra Naidu, “Coupled Fixed point and coincidence point theorems for generalized contractions in metric spaces with a partial order”, Italian Journal of pure and applied mathematics, 39 (2018), 434–450 | MR | Zbl
[13] K. Ravibabu, Ch.Srinivasarao, Ch. Ragavendra naidu, “Applications to Integral Equations with Coupled Fixed Point Theorems in Ab-Metric Space”, Thai Journal of Mathematics, 2018, 148–167 | MR | Zbl
[14] M. Ughade, D. Turkoglu, S.R. Singh, R.D. Daheriya, “Some fixed point theorems in $A_b$-metric space”, British J. Math. Comput. Sci., 19 (2016), 1–24 | DOI