On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 329-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The automorphisms of the matrix ball associated with the classical domains of the second type are described in this paper. The properties of the second type matrix ball $B_{m,n}^{(2)}$ are studied.
Keywords: classical domain, automorphism of the matrix ball, Shilov's boundary.
Mots-clés : matrix ball, volume
@article{JSFU_2022_15_3_a6,
     author = {Uktam S. Rakhmonov and Jonibek Sh. Abdullayev},
     title = {On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {329--342},
     year = {2022},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a6/}
}
TY  - JOUR
AU  - Uktam S. Rakhmonov
AU  - Jonibek Sh. Abdullayev
TI  - On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 329
EP  - 342
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a6/
LA  - en
ID  - JSFU_2022_15_3_a6
ER  - 
%0 Journal Article
%A Uktam S. Rakhmonov
%A Jonibek Sh. Abdullayev
%T On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 329-342
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a6/
%G en
%F JSFU_2022_15_3_a6
Uktam S. Rakhmonov; Jonibek Sh. Abdullayev. On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 329-342. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a6/

[1] V.S. Vladimirov, Methods of functions of several complex variables, Nauka, M., 1964 | MR

[2] B.V. Shabat, Introduction to Complex Analysis, v. II, Functions of Several Variables, Nauka. Physical and mathematical literature, M., 1985 | MR

[3] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^{n}$, Springer–Verlag, New York–Berlin–Heidelberg, 1980 | MR

[4] S.G. Krantz, Harmonic and complex analysis in several variables, Springer Monographs in Mathematics, Cham, Switzerland, 2017 | DOI | MR | Zbl

[5] E. Cartan, “Sur les domaines bornes homogenes de l'espace de $n$ variables complexes”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 116–162 | DOI | MR

[6] C.L. Siegel, Automorphic functions of several complex variables, Inostrannaya Literatura, M., 1954 | MR

[7] I.I. Pjateckii–Sapiro, Geometry of classical domains and the theory of automorphic functions, Fizmatgiz, M., 1961 | MR

[8] Hua Luogeng, Harmonic analysis of functions of several complex variables, in classical domains, IL, M., 1963 | MR

[9] A.G. Sergeev, On matrix and Reinhardt domains, Inst. Mittag–Leffler, Stockholm, 1988

[10] G. Khudayberganov, Spectral decomposition for functions from several matrices, TashSU, Tashkent, 1993 (in Russian)

[11] G. Khudayberganov, B.B. Khidirov, U.S. Rakhmonov, “Automorphisms of matrix balls”, Acta NUUz, 2010, no. 3, 205–210 (in Russian)

[12] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis in matrix domains, Monograph., Siberian Federal University, Krasnoyarsk, 2011 (in Russian)

[13] G. Khudayberganov, A.M. Khalknazarov, J. Sh.Abdullayev, “Laplace and Hua Luogeng operators”, Russian Mathematics (Izvestiya VUZ. Matematika), 64:3 (2020), 66–71 | DOI | MR | Zbl

[14] S. Kosbergenov, “Holomorphic automorphisms and the Bergman integral for a matrix ball”, Dokl. AN RUz, 1998, no. 1, 7–10 (In Russian) | MR | Zbl

[15] S. Kosbergenov, “On a multidimensional boundary Morera theorem for the matrix ball”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 4, 28–32 | MR | Zbl

[16] A. Khalknazarov, “The volume of the matrix ball in the space of matrices”, Uzbek Mathematical Journal, 2012, no. 3, 135–139 (in Russian) | MR

[17] S. Kosbergenov, “On the Carleman formula for a matrix ball”, Russian Math. (Iz. VUZ), 43:1 (1999), 72–75 | DOI | MR | Zbl

[18] G. Khudayberganov, U.S. Rakhmonov, Z.Q. Matyakubov, “Integral formulas for some matrix domains”, Contemporary Mathematic, 662, AMS, 2016, 89–95 | DOI | MR | Zbl

[19] G. Khudayberganov, U.S. Rakhmonov, “The Bergman and Cauchy-Szegő kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7:3 (2014), 305–310 | MR | Zbl

[20] G. Khudayberganov, B.P. Otemuratov, U.S. Rakhmonov, “Boundary Morera theorem for the matrix ball of the third type”, Journal of Siberian Federal University. Mathematics Physics, 11:1 (2018), 40–45 | DOI | MR | Zbl

[21] G. Khudayberganov, U.S. Rakhmonov, “Carleman Formula for Matrix Ball of the Third Type, Algebra”, Complex Analysis, and Pluripotential Theory, USUZCAMP 2017, Springer Proceedings in Mathematics Statistics, 264, Springer, Cham, 2018, 101–108 | DOI | MR | Zbl

[22] U.S. Rakhmonov, J. Sh.Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 548–557 | DOI | MR | Zbl

[23] G. Khudayberganov, J. Sh.Abdullayev, “Relationship between the Kernels Bergman and Cauchy-Szegő in the domains $\tau ^{+} \left(n-1\right)$ and $\Re _{IV}^{n} $”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:5 (2020), 559–567 | DOI | MR | Zbl

[24] Th.Th. Voronov, “On volumes of classical supermanifolds”, Sbornik: Mathematics, 207:11 (2016), 1512–1536 | DOI | MR | Zbl

[25] Hua Luogeng, “On the theory of automorphic functions of a matrix variable I-geometrical basis”, American Journal of Mathematics, 66:3 (1944), 470–488 | DOI | MR | Zbl

[26] G. Khudayberganov, J. Sh.Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:2 (2021), 296–310 | DOI | MR | Zbl

[27] B.T. Kurbanov, “Morera's theorem for some unbounded domains”, Proceedings of the international conference “Mathematical models and methods of their research”, v. 2, Krasnoyarsk, 2001, 49–51

[28] G. Khudayberganov, Z.K. Matyakubov, “Integral formulas in Siegel domains”, Uzbek mathematical journal, 2013, no. 3, 116–128 (in Russian) | MR

[29] G. Khudayberganov, Z.K. Matyakubov, “Bergman's formula for an unbounded matrix domain”, Vestnik NUUz, 2013, no. 4.1, 36–39 (in Russian)

[30] J. Sh.Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 3, 88–96 | Zbl

[31] G. Khudayberganov, J. Sh.Abdullayev, “The boundary Morera theorem for domain ${{\tau }^{+}}\left( n-1 \right)$”, Ufimsk. Mat. Zh., 13:3 (2021), 196–210 | MR | Zbl

[32] Dzh.K. Tishabaev, “Invariant metrics and indicatrices of bounded domains in ${{\mathbb{C}}^{n}}$”, Siberian Math. J., 30:1 (1989), 166–168 | DOI | MR | Zbl