A further generalization of the reverse Minkowski type inequality via H\"{o}lder and Jensen inequalities
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 319-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main objective of this article is to establish new generalizations of the reverse Minkowski's integral inequalities by introducing weighted functions and two integrability parameters. Two new theorems will be proved using Jensen's integral inequality and Hölder's two-parameter inequality, some reverse Minkowski type Integral inequalities are also obtained.
Keywords: convex function, Hölder inequality, Minkowski inequality, Jensen inequality.
@article{JSFU_2022_15_3_a5,
     author = {Bouharket Benaissa},
     title = {A further generalization of the reverse {Minkowski} type inequality via {H\"{o}lder} and {Jensen} inequalities},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {319--328},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/}
}
TY  - JOUR
AU  - Bouharket Benaissa
TI  - A further generalization of the reverse Minkowski type inequality via H\"{o}lder and Jensen inequalities
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 319
EP  - 328
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/
LA  - en
ID  - JSFU_2022_15_3_a5
ER  - 
%0 Journal Article
%A Bouharket Benaissa
%T A further generalization of the reverse Minkowski type inequality via H\"{o}lder and Jensen inequalities
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 319-328
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/
%G en
%F JSFU_2022_15_3_a5
Bouharket Benaissa. A further generalization of the reverse Minkowski type inequality via H\"{o}lder and Jensen inequalities. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 319-328. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/

[1] B. Benaissa, “More on reverses of Minkowski's inequalities and Hardy's integral inequalities”, Asian-Eur. J. Math., 13:3 (2020), 1–7 | DOI | MR

[2] W.T. Sulaiman, “Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities”, Int. J. Mod. Math. Sci., 1:1 (2012), 14–24 | MR

[3] B. Sroysang, “More on Reverses of Minkowski's Integral Inequality”, Mathematica Aeterna, 3:7 (2013), 597–600 | MR | Zbl

[4] S. Bobkov, M. Madiman, “Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures”, J. Func. Anal., 262 (2012), 3309–3339 | DOI | MR | Zbl

[5] G. Rahman et al, “The Minkowski inequalities via generalized proportional fractional integral operators”, Adv. Difference Equ., 2019:287 (2019) | DOI | MR

[6] S. Rashid, F. Jarad, Yu-M. Chu, “A Note on Reverse Minkowski Inequality via Generalized Proportional Fractional Integral Operator with respect to Another Function”, Math. Probl. Eng., 2020 (2020), 1–12 | DOI | MR | Zbl

[7] S. Rashid et al., “New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals”, J. Inequal. Appl., 2020:177 (2020) | DOI | MR