Mots-clés : Hölder inequality
@article{JSFU_2022_15_3_a5,
author = {Bouharket Benaissa},
title = {A further generalization of the reverse {Minkowski} type inequality via {H\"older} and {Jensen} inequalities},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {319--328},
year = {2022},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/}
}
TY - JOUR AU - Bouharket Benaissa TI - A further generalization of the reverse Minkowski type inequality via Hölder and Jensen inequalities JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 319 EP - 328 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/ LA - en ID - JSFU_2022_15_3_a5 ER -
%0 Journal Article %A Bouharket Benaissa %T A further generalization of the reverse Minkowski type inequality via Hölder and Jensen inequalities %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 319-328 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/ %G en %F JSFU_2022_15_3_a5
Bouharket Benaissa. A further generalization of the reverse Minkowski type inequality via Hölder and Jensen inequalities. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 319-328. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a5/
[1] B. Benaissa, “More on reverses of Minkowski's inequalities and Hardy's integral inequalities”, Asian-Eur. J. Math., 13:3 (2020), 1–7 | DOI | MR
[2] W.T. Sulaiman, “Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities”, Int. J. Mod. Math. Sci., 1:1 (2012), 14–24 | MR
[3] B. Sroysang, “More on Reverses of Minkowski's Integral Inequality”, Mathematica Aeterna, 3:7 (2013), 597–600 | MR | Zbl
[4] S. Bobkov, M. Madiman, “Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures”, J. Func. Anal., 262 (2012), 3309–3339 | DOI | MR | Zbl
[5] G. Rahman et al, “The Minkowski inequalities via generalized proportional fractional integral operators”, Adv. Difference Equ., 2019:287 (2019) | DOI | MR
[6] S. Rashid, F. Jarad, Yu-M. Chu, “A Note on Reverse Minkowski Inequality via Generalized Proportional Fractional Integral Operator with respect to Another Function”, Math. Probl. Eng., 2020 (2020), 1–12 | DOI | MR | Zbl
[7] S. Rashid et al., “New generalized reverse Minkowski and related integral inequalities involving generalized fractional conformable integrals”, J. Inequal. Appl., 2020:177 (2020) | DOI | MR