Coincidence point results and its applications in partially ordered metric spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 397-407
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to establish some common fixed point theorems for $f$-nondecreasing self-mapping satisfying a certain rational type contraction condition in the frame of a metric spaces endowed with partial order. Also, some consequences of the results in terms of an integral type contractions are presented in the space. Further, the monotone iterative technique has been used to find a unique solution of an integral equation.
Keywords:
ordered metric space, rational contraction, compatible mappings, coincidence point, common fixed point.
@article{JSFU_2022_15_3_a12,
author = {N. Seshagiri Rao and Karusala Kalyani and Tekle Gemechu},
title = {Coincidence point results and its applications in partially ordered metric spaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {397--407},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/}
}
TY - JOUR AU - N. Seshagiri Rao AU - Karusala Kalyani AU - Tekle Gemechu TI - Coincidence point results and its applications in partially ordered metric spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 397 EP - 407 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/ LA - en ID - JSFU_2022_15_3_a12 ER -
%0 Journal Article %A N. Seshagiri Rao %A Karusala Kalyani %A Tekle Gemechu %T Coincidence point results and its applications in partially ordered metric spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 397-407 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/ %G en %F JSFU_2022_15_3_a12
N. Seshagiri Rao; Karusala Kalyani; Tekle Gemechu. Coincidence point results and its applications in partially ordered metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 397-407. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/