Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a12, author = {N. Seshagiri Rao and Karusala Kalyani and Tekle Gemechu}, title = {Coincidence point results and its applications in partially ordered metric spaces}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {397--407}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/} }
TY - JOUR AU - N. Seshagiri Rao AU - Karusala Kalyani AU - Tekle Gemechu TI - Coincidence point results and its applications in partially ordered metric spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 397 EP - 407 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/ LA - en ID - JSFU_2022_15_3_a12 ER -
%0 Journal Article %A N. Seshagiri Rao %A Karusala Kalyani %A Tekle Gemechu %T Coincidence point results and its applications in partially ordered metric spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 397-407 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/ %G en %F JSFU_2022_15_3_a12
N. Seshagiri Rao; Karusala Kalyani; Tekle Gemechu. Coincidence point results and its applications in partially ordered metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 397-407. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a12/
[1] S. Banach, “Sur les operations dans les ensembles abstraits et leur application aux equations untegrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR | Zbl
[2] B.K. Dass, S. Gupta, “An extension of Banach contraction principle through rational expression”, Indian J. Pure Appl. Math., 6 (1975), 1455–1458 | MR | Zbl
[3] S.K. Chetterjee, “Fixed point theorems”, C.R. Acad. Bulgara Sci., 25 (1972), 727–730 | MR
[4] M. Edelstein, “On fixed points and periodic points under contraction mappings”, J. Lond. Math. Soc., 37 (1962), 74–79 | DOI | MR | Zbl
[5] G.C. Hardy, T. Rogers, “A generalization of fixed point theorem of S. Reich”, Can. Math. Bull., 16 (1973), 201–206 | DOI | MR | Zbl
[6] D.S. Jaggi, “Some unique fixed point theorems”, Indian J. Pure Appl. Math., 8 (1977), 223–230 | MR | Zbl
[7] R. Kannan, “Some results on fixed points-II”, Am. Math. Mon., 76 (1969), 71–76 | MR
[8] S. Reich, “Some remarks concerning contraction mappings”, Can. Math. Bull., 14 (1971), 121–124 | DOI | MR | Zbl
[9] P.L. Sharma, A.K. Yuel, “A unique fixed point theorem in metric space”, Bull. Cal. Math. Soc., 76 (1984), 153–156 | MR | Zbl
[10] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974 | MR | Zbl
[11] C.S. Wong, “Common fixed points of two mappings”, Pac. J. Math., 48 (1973), 299–312 | DOI | MR | Zbl
[12] R.P. Agarwal, M.A. El-Gebeily, D.O'Regan, “Generalized contractions in partially ordered metric spaces”, Appl. Anal., 87 (2008), 1–8 | DOI | MR
[13] A. Amini-Harandi, H. Emami, “A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations”, Nonlinear Anal., Theory Methods Appl., 72 (2010), 2238–2242 | DOI | MR | Zbl
[14] C. Ankush, B. Damjanovic, D. Lakshmi Kanta, “Fixed point results on metric spaces via simulation functions”, Filomat, 31:11 (2017), 3365–3375 | DOI | MR | Zbl
[15] J. Harjani, B. Lopez, K. Sadarangani, “A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space”, Abstr. Appl. Anal., 2010 (2010), 190701, 8 pp. | DOI | MR | Zbl
[16] S. Hong, “Fixed points of multivalued operators in ordered metric spaces with applications”, Nonlinear Anal., Theory Methods Appl., 72 (2010), 3929–3942 | DOI | MR | Zbl
[17] J.J. Nieto, R.R. Lopez, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order, 22 (2005), 223–239 | DOI | MR | Zbl
[18] J.J. Nieto, “An abstract monotone iterative technique”, Nonlinear Analysis, Theory Methods and Applications, 28:12 (1997), 1923–1933 | DOI | MR | Zbl
[19] A.C.M. Ran, M.C.B. Reurings, “A fixed point theorem in partially ordered sets and some application to matrix equations”, Proc. Am. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl
[20] E.S. Wolk, “Continuous convergence in partially ordered sets”, Gen. Topol. Appl., 5 (1975), 221–234 | DOI | MR | Zbl
[21] X. Zhang, “Fixed point theorems of multivalued monotone mappings in ordered metric spaces”, Appl. Math. Lett., 23 (2010), 235–240 | DOI | MR | Zbl
[22] T.G. Bhaskar, V. Lakshmikantham, “Fixed point theory in partially ordered metric spaces and applications”, Nonlinear Anal., Theory Methods Appl., 65 (2006), 1379–1393 | DOI | MR | Zbl
[23] V. Lakshmikantham, L.J.Ćirić, “Coupled fixed point theorems for nonlinear contractions in partially ordered metric space”, Nonlinear Anal., 70 (2009), 4341–4349 | DOI | MR | Zbl
[24] M. Arshad, A. Azam, P. Vetro, “Some common fixed results in cone metric spaces”, Fixed Point Theory Appl., 2009, 493965 | DOI | MR | Zbl
[25] M. Arshad, J. Ahmad, E. Karapinar, “Some common fixed point results in rectangular metric spaces”, Int. J. Anal., 2013, 307234 | MR | Zbl
[26] I. Altun, B. Damjanovic, D. Djoric, “Fixed point and common fixed point theorems on ordered cone metric spaces”, Appl. Math. Lett., 23 (2010), 310–316 | DOI | MR | Zbl
[27] Y.J. Cho, M.H. Shah, N. Hussain, “Coupled fixed points of weakly $F$-contractive mappings in topological spaces”, Appl. Math. Lett., 24 (2011), 1185–1190 | DOI | MR | Zbl
[28] L.J.Ćirić, N. Cakić, M Rajović, J.S. Ume, “Monotone generalized nonlinear contractions in partially ordered metric spaces”, Fixed Point Theory Appl., 2008, no. 11, 131294 | MR
[29] S. Chandok, “Some common fixed point results for generalized weak contractive mappings in partially ordered metrix spaces”, Journal of Nonlinear Anal. Opt., 4 (2013), 45–52 | MR | Zbl
[30] S. Chandok, “Some common fixed point results for rational type contraction mappings in partially ordered metric spaces”, Mathematica Bohemica, 138:4 (2013), 407–413 | DOI | MR | Zbl
[31] E. Graily, S.M. Vaezpour, R. Saadati, Y.J. Cho, “Generalization of fixed point theorems in ordered metric spaces concerning generalized distance”, Fixed Point Theory Appl., 2011, 30 | DOI | MR | Zbl
[32] E. Karapinar, “Couple fixed point theorems for nonlinear contractions in cone metric spaces”, Comput. Math. Appl., 59:12 (2010), 3656–3668 | DOI | MR | Zbl
[33] M. Ozturk, M. Basarir, “On some common fixed point theorems with rational expressions on cone metric spaces over a Banach algebra”, Hacet. J. Math. Stat., 41:2 (2012), 211–222 | MR | Zbl
[34] F. Sabetghadam, H.P. Masiha, A.H. Sanatpour, “Some coupled fixed point theorems in cone metric spaces”, Fixed point Theory Appl., 2009, no. 8, 125426 | MR | Zbl
[35] B. Samet, H. Yazidi, “Coupled fixed point theorems in partially ordered $\epsilon$-chainable metric spaces”, J. Math. Comput. Sci., 1 (2010), 142–151 | DOI | MR
[36] W. Shatanawi, “Partially ordered cone metric spaces and coupled fixed point results”, Comput. Math. Appl., 60 (2010), 2508–2515 | DOI | MR | Zbl
[37] W. Sintunavarat, Y.J. Cho, P. Kumam, “Common fixed point theorems for $c$-distance in ordered cone metric space”, Comput. Math. Appl., 62 (2011), 1969–1978 | DOI | MR | Zbl
[38] N. Seshagiri Rao, K. Kalyani, “Generalized Contractions to Coupled Fixed Point Theorems in Partially Ordered Metric Spaces”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:4 (2020), 492–502 | DOI | MR | Zbl
[39] N. Seshagiri Rao, K. Kalyani, “Coupled fixed point theorems with rational expressions in partially ordered metric spaces”, The Journal of Analysis, 28:4 (2020), 1085–1095 | DOI | MR | Zbl
[40] N. Seshagiri Rao, K. Kalyani, Kejal Khatri, “Contractive mapping theorems in Partially ordered metric spaces”, CUBO, 22:2 (2020), 203–214 | DOI | MR | Zbl
[41] N. Seshagiri Rao, K. Kalyani, “Unique fixed point theorems in partially ordered metric spaces”, Heliyon, 6:11 (2020), e05563 | DOI | MR
[42] N. Seshagiri Rao, K. Kalyani, “Generalized fixed point results of rational type contractions in partially ordered metric spaces”, BMC Research Notes, 14:390 (2021), 13 pp. | DOI | MR
[43] K. Kalyani, N. Seshagiri Rao, Belay Mituku, “On fixed point theorems of monotone functions in Ordered metric spaces”, The Journal of Analysis, 2021, 14 pp. | DOI | MR
[44] E. Liz, J.J. Nieto, “Periodic boundary value problem for integro-differentail equations with general kernel”, Dynamical Systems and Applications, 3 (1994), 297–304 | MR | Zbl