Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 378-384.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the well-known hypothesis of D. R. Hughes that the full collineation group of a non-Desarguesian semifield projective plane of a finite order is solvable (the question 11.76 in Kourovka notebook was written down by N. D. Podufalov). The spread set method allows us to prove that any non-Desarguesian semifield plane of order $p^N$, where $p\equiv 1\pmod 4$ is prime, does not admit an autotopism subgroup isomorphic to the dihedral group of order $8$. As a corollary, we obtain the extensive list of simple non-Abelian groups which cannot be the autotopism subgroups.
Keywords: semifield plane, spread set, Baer involution, homology
Mots-clés : autotopism.
@article{JSFU_2022_15_3_a10,
     author = {Olga V. Kravtsova},
     title = {Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {378--384},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/}
}
TY  - JOUR
AU  - Olga V. Kravtsova
TI  - Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 378
EP  - 384
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/
LA  - en
ID  - JSFU_2022_15_3_a10
ER  - 
%0 Journal Article
%A Olga V. Kravtsova
%T Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 378-384
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/
%G en
%F JSFU_2022_15_3_a10
Olga V. Kravtsova. Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 378-384. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/

[1] L.E. Dickson, “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7:3 (1906), 370–390 | DOI | MR | Zbl

[2] D.R. Hughes, F.C. Piper, Projective planes, Springer–Verlag Publ, New-York, 1973 | MR | Zbl

[3] V.D. Mazurov, E.I. Khukhro (eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, 19, Sobolev Inst. Math. Publ., Novosibirsk, 2018 | MR

[4] O.V. Kravtsova, “Semifield planes of even order that admit the Baer involution”, The Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013), 26–37 (in Russian) | Zbl

[5] O.V. Kravtsova, “Semifield planes of odd order that admit a subgroup of autotopisms isomorphic to $A_4$”, Russian Mathematics, 60:9 (2016), 7–22 | DOI | MR | Zbl

[6] O.V. Kravtsova, “Elementary abelian 2-subgroups in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 49–63 | DOI | MR | Zbl

[7] O.V. Kravtsova, “2-elements in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 96–110 | DOI | MR | Zbl

[8] O.V. Kravtsova, “On alternating subgroup $A_5$ in autotopism group of finite semifield plane”, Siberian Electronic Mathematical Reports, 17 (2020), 47–50 | DOI | MR | Zbl

[9] N.D. Podufalov, “On spread sets and collineations of projective planes”, Contem. Math., 131, no. 1, 1992, 697–705 | DOI | MR | Zbl

[10] H. Luneburg, Translation planes, Springer-Verlag Publ., New-York, 1980 | MR | Zbl

[11] O.V. Kravtsova, “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | DOI | MR | Zbl

[12] N.D. Podufalov, B.K. Durakov, O.V. Kravtsova, E.B. Durakov, “On the semifield planes of order $16^2$”, Siberian Mathematical Journal, 37 (1996), 535–541 | DOI | MR | Zbl

[13] D.M. Goldschmidth, “2-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR

[14] D. Gorenstein, Finite simple groups. An introduction to their classification, Plenum Press, New York, 1982 | MR | Zbl