Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_3_a10, author = {Olga V. Kravtsova}, title = {Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {378--384}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/} }
TY - JOUR AU - Olga V. Kravtsova TI - Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 378 EP - 384 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/ LA - en ID - JSFU_2022_15_3_a10 ER -
%0 Journal Article %A Olga V. Kravtsova %T Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 378-384 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/ %G en %F JSFU_2022_15_3_a10
Olga V. Kravtsova. Dihedral group of order $8$ in an autotopism group of a semifield projective plane of odd order. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 3, pp. 378-384. http://geodesic.mathdoc.fr/item/JSFU_2022_15_3_a10/
[1] L.E. Dickson, “Linear algebras in which division is always uniquely possible”, Trans. Amer. Math. Soc., 7:3 (1906), 370–390 | DOI | MR | Zbl
[2] D.R. Hughes, F.C. Piper, Projective planes, Springer–Verlag Publ, New-York, 1973 | MR | Zbl
[3] V.D. Mazurov, E.I. Khukhro (eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, 19, Sobolev Inst. Math. Publ., Novosibirsk, 2018 | MR
[4] O.V. Kravtsova, “Semifield planes of even order that admit the Baer involution”, The Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013), 26–37 (in Russian) | Zbl
[5] O.V. Kravtsova, “Semifield planes of odd order that admit a subgroup of autotopisms isomorphic to $A_4$”, Russian Mathematics, 60:9 (2016), 7–22 | DOI | MR | Zbl
[6] O.V. Kravtsova, “Elementary abelian 2-subgroups in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 49–63 | DOI | MR | Zbl
[7] O.V. Kravtsova, “2-elements in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 96–110 | DOI | MR | Zbl
[8] O.V. Kravtsova, “On alternating subgroup $A_5$ in autotopism group of finite semifield plane”, Siberian Electronic Mathematical Reports, 17 (2020), 47–50 | DOI | MR | Zbl
[9] N.D. Podufalov, “On spread sets and collineations of projective planes”, Contem. Math., 131, no. 1, 1992, 697–705 | DOI | MR | Zbl
[10] H. Luneburg, Translation planes, Springer-Verlag Publ., New-York, 1980 | MR | Zbl
[11] O.V. Kravtsova, “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | DOI | MR | Zbl
[12] N.D. Podufalov, B.K. Durakov, O.V. Kravtsova, E.B. Durakov, “On the semifield planes of order $16^2$”, Siberian Mathematical Journal, 37 (1996), 535–541 | DOI | MR | Zbl
[13] D.M. Goldschmidth, “2-fusion in finite groups”, Ann. Math., 99:1 (1974), 70–117 | DOI | MR
[14] D. Gorenstein, Finite simple groups. An introduction to their classification, Plenum Press, New York, 1982 | MR | Zbl