A note on explicit formulas for Bernoulli polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 226-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $r\in\left \{1,-1,\frac{1}{2}\right\}$, we prove several explicit formulas for the $n$-th Bernoulli polynomial $B_{n}\left(x \right)$, in which $B_{n}\left(x\right)$ is equal to a linear combination of the polynomials $x^{n}$, $\left(x+r\right)^{n},\ldots,$ $\left(x+rm\right)^{n}$, where $m$ is any fixed positive integer greater than or equal to $n$.
Keywords: combinatorial identities.
Mots-clés : Appell polynomial, Bernoulli polynomial, binomial coefficients
@article{JSFU_2022_15_2_a8,
     author = {Laala Khaldi and Farid Bencherif and Abdallah Derbal},
     title = {A note on explicit formulas for {Bernoulli} polynomials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {226--235},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/}
}
TY  - JOUR
AU  - Laala Khaldi
AU  - Farid Bencherif
AU  - Abdallah Derbal
TI  - A note on explicit formulas for Bernoulli polynomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 226
EP  - 235
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/
LA  - en
ID  - JSFU_2022_15_2_a8
ER  - 
%0 Journal Article
%A Laala Khaldi
%A Farid Bencherif
%A Abdallah Derbal
%T A note on explicit formulas for Bernoulli polynomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 226-235
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/
%G en
%F JSFU_2022_15_2_a8
Laala Khaldi; Farid Bencherif; Abdallah Derbal. A note on explicit formulas for Bernoulli polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 226-235. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/

[1] J.A. Adell, A. Lekuona, “Closed form expressions for Appell polynomials”, Ramanujan J., 49:3 (2019), 567–583 | DOI | MR | Zbl

[2] P. Appell, “Sur une classe de polynômes”, Ann. Sci. Éc. Norm. Supér., 9:2 (1880), 119–144 | MR

[3] Horst Bergmann, “Eine explizite Darstellung der Bernoullischen Zahlen”, Math. Nachr., 34 (1967), 377–378 | MR | Zbl

[4] J. Bernoulli, Ars Conjectandi, Thurnisiorum, 1713

[5] R. Chellal, F. Bencherif, M. Mehbali, “An Identity for Generalized Bernoulli Polynomials”, J. Integer Seq., 23 (2020), 20.11.2 | MR | Zbl

[6] L. Comtet, Advanced Combinatorics, Dordrecht, Holland–Boston, 1974 | MR | Zbl

[7] S. Fukuhara, N. Kawazumi, Y. Kuno, “Self-intersections of curves on a surface and Bernoulli numbers”, Osaka J. Math., 55 (2018), 761–768 | MR | Zbl

[8] H.W. Gould, “Explicit formulas for Bernoulli numbers”, Amer. Math. Monthly, 79 (1972), 44–51 | DOI | MR | Zbl

[9] H.W. Gould, Combinatorial identities, revised edition, Morgantown, West Virginia, 1972

[10] H.W. Gould, Tables of Combinatorial Identities, Edited and compiled by Prof. Jocelyn Quaintance, 2010 http://www.math.wvu.edu/g̃ould

[11] H.W. Gould, Table for combinatorial numbers and associated identities: Table 2 https://www.math.wvu.edu/g̃ould/Vol.8.pdf | MR

[12] T. Komatsu, C. Pita, Several explicit formulae for Bernoulli polynomials, Math. Commun., 21 (2016), 127–140 | MR | Zbl

[13] L. Kronecker, “Bemerkung zur Abhandlung des Herrn Worpitzky”, J. Reine Angew. Math., 94 (1883), 268–270 | DOI | MR

[14] B. Mazur, Bernoulli numbers and the unity of mathematics, manuscript http://people.math.harvard.edu/m̃azur/papers/slides.Bartlett.pdf

[15] C. Pita, “Carlitz-type and other Bernoulli identities”, J. Integer Seq., 19 (2016), 16.1.8 | MR

[16] A.M. Rockett, “Sums of the Inverses of Binomial Coefficients”, Fibonacci Quart., 19:5 (1981), 433–437 | MR

[17] Ove J. Munch, “Om Potensproduktsummer”, Nordisk Mat. Tidsskr., 7 (1959), 5–19 | MR | Zbl

[18] A.M. Robert, A Course in p-adic Analysis, Springer–Verlag, New York, 2000 | MR | Zbl