A note on explicit formulas for Bernoulli polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 226-235

Voir la notice de l'article provenant de la source Math-Net.Ru

For $r\in\left \{1,-1,\frac{1}{2}\right\}$, we prove several explicit formulas for the $n$-th Bernoulli polynomial $B_{n}\left(x \right)$, in which $B_{n}\left(x\right)$ is equal to a linear combination of the polynomials $x^{n}$, $\left(x+r\right)^{n},\ldots,$ $\left(x+rm\right)^{n}$, where $m$ is any fixed positive integer greater than or equal to $n$.
Keywords: combinatorial identities.
Mots-clés : Appell polynomial, Bernoulli polynomial, binomial coefficients
@article{JSFU_2022_15_2_a8,
     author = {Laala Khaldi and Farid Bencherif and Abdallah Derbal},
     title = {A note on explicit formulas for {Bernoulli} polynomials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {226--235},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/}
}
TY  - JOUR
AU  - Laala Khaldi
AU  - Farid Bencherif
AU  - Abdallah Derbal
TI  - A note on explicit formulas for Bernoulli polynomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 226
EP  - 235
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/
LA  - en
ID  - JSFU_2022_15_2_a8
ER  - 
%0 Journal Article
%A Laala Khaldi
%A Farid Bencherif
%A Abdallah Derbal
%T A note on explicit formulas for Bernoulli polynomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 226-235
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/
%G en
%F JSFU_2022_15_2_a8
Laala Khaldi; Farid Bencherif; Abdallah Derbal. A note on explicit formulas for Bernoulli polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 226-235. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/