A note on explicit formulas for Bernoulli polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 226-235
Voir la notice de l'article provenant de la source Math-Net.Ru
For $r\in\left \{1,-1,\frac{1}{2}\right\}$, we prove several explicit formulas for the $n$-th Bernoulli polynomial $B_{n}\left(x \right)$, in which $B_{n}\left(x\right)$ is equal to a linear combination of the polynomials $x^{n}$, $\left(x+r\right)^{n},\ldots,$ $\left(x+rm\right)^{n}$, where $m$ is any fixed positive integer greater than or equal to $n$.
Keywords:
combinatorial identities.
Mots-clés : Appell polynomial, Bernoulli polynomial, binomial coefficients
Mots-clés : Appell polynomial, Bernoulli polynomial, binomial coefficients
@article{JSFU_2022_15_2_a8,
author = {Laala Khaldi and Farid Bencherif and Abdallah Derbal},
title = {A note on explicit formulas for {Bernoulli} polynomials},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {226--235},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/}
}
TY - JOUR AU - Laala Khaldi AU - Farid Bencherif AU - Abdallah Derbal TI - A note on explicit formulas for Bernoulli polynomials JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 226 EP - 235 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/ LA - en ID - JSFU_2022_15_2_a8 ER -
%0 Journal Article %A Laala Khaldi %A Farid Bencherif %A Abdallah Derbal %T A note on explicit formulas for Bernoulli polynomials %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 226-235 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/ %G en %F JSFU_2022_15_2_a8
Laala Khaldi; Farid Bencherif; Abdallah Derbal. A note on explicit formulas for Bernoulli polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 226-235. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a8/