Algorithm of the regularization method for a singularly perturbed integro-differential equation with a rapidly decreasing kernel and rapidly oscillating inhomogeneity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 216-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a singularly perturbed integro-differential equation with a rapidly oscillating right-hand side, which includes an integral operator with a rapidly varying kernel. The main goal of this work is to generalize the Lomov's regularization method and to reveal the influence of the rapidly oscillating right-hand side and a rapidly varying kernel on the asymptotics of the solution to the original problem.
Keywords: integro-differential equation, rapidly oscillating right-hand side, rapidly varying kernel, regularization, solvability of iterative problems.
Mots-clés : singular perturbation
@article{JSFU_2022_15_2_a7,
     author = {Abdukhafiz A. Bobodzhanov and Burkhan T. Kalimbetov and Valeriy F. Safonov},
     title = {Algorithm of the regularization method for a singularly perturbed integro-differential equation with a rapidly decreasing kernel and rapidly oscillating inhomogeneity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {216--225},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a7/}
}
TY  - JOUR
AU  - Abdukhafiz A. Bobodzhanov
AU  - Burkhan T. Kalimbetov
AU  - Valeriy F. Safonov
TI  - Algorithm of the regularization method for a singularly perturbed integro-differential equation with a rapidly decreasing kernel and rapidly oscillating inhomogeneity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 216
EP  - 225
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a7/
LA  - en
ID  - JSFU_2022_15_2_a7
ER  - 
%0 Journal Article
%A Abdukhafiz A. Bobodzhanov
%A Burkhan T. Kalimbetov
%A Valeriy F. Safonov
%T Algorithm of the regularization method for a singularly perturbed integro-differential equation with a rapidly decreasing kernel and rapidly oscillating inhomogeneity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 216-225
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a7/
%G en
%F JSFU_2022_15_2_a7
Abdukhafiz A. Bobodzhanov; Burkhan T. Kalimbetov; Valeriy F. Safonov. Algorithm of the regularization method for a singularly perturbed integro-differential equation with a rapidly decreasing kernel and rapidly oscillating inhomogeneity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 216-225. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a7/

[1] N.I. Shkil, Asymptotic methods in differential equations, Naukova Dumka, Kiev, 1971

[2] S.F. Feshchenko, N.I. Shkil, L.D. Nikolenko, Asymptotic methods in the theory of linear differential equations, Naukova Dumka, Kiev, 1966 | MR

[3] Yu.L. Daletsky, “Asymptotic method for some differential equations with oscillating coefficients”, Dokl. Akad. Nauk SSSR, 143:5 (1962), 1026–1029 (in Russian) | MR | Zbl

[4] S.A. Lomov, Introduction to the general theory of singular perturbations, Nauka, M., 1981 | MR | Zbl

[5] Ryzhikh A.D., “Asymptotic solution of a linear differential equation with a rapidly oscillating coefficient”, Trudy Moskovskogo energeticheskogo instituta, 357 (1978), 92–94 (in Russian) | MR | Zbl

[6] B.T. Kalimbetov, M.A. Temirbekov, Zh.O. Khabibullaev, Asymptotic solution of singular perturbed problems with an instable spectrum of the limiting operator, Abstr. and Appl. Analysis, 2012 | DOI | MR

[7] A.A. Bobodzhanov, V.F. Safonov, “Singularly perturbed nonlinear integro-differential systems with rapidly varying kernels”, Mathematical Notes, 72:5 (2002), 605–614 | DOI | MR | Zbl

[8] A.A. Bobodzhanov, V.F. Safonov, “Singularly perturbed integro-differential equations with diagonal degeneration of the kernel in reverse time”, Differential Equations, 40:1 (2004), 120–127 | DOI | MR | Zbl

[9] A.A. Bobodzhanov, V.F. Safonov, “Asymptotic analysis of integro-differential systems with an unstable spectral value of the integral operator's kernel”, Comput. Math. and Math. Phys., 47:1 (2007), 65–79 | DOI | MR | Zbl

[10] A.A. Bobodzhanov, V.F. Safonov, V.I. Kachalov, “Asymptotic and pseudoholomorphic solutions of singularly perturbed differential and integral equations in the lomov's regularization method”, Axioms, 8:27 (2019) | DOI | MR

[11] A.A. Bobodzhanov, V.F. Safonov, “Asymptotic solutions of Fredholm integro-differential equations with rapidly changing kernels and irreversible limit operator”, Russian Math., 59:10 (2015), 1–15 | DOI | MR | Zbl

[12] V.F. Safonov, A.A. Bobodzhanov, “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufimsk. Math. Journal, 2:10 (2018), 3–12 | DOI | MR | Zbl

[13] A.A. Bobodzhanov, V.F. Safonov, “A generalization of the regularization method to the singularly perturbed integro-differential equations with partial derivatives”, Russian Math., 62:3 (2018), 6–17 | DOI | MR | Zbl

[14] V.F. Safonov, A.A. Bobodzhanov, “Regularized asymptotic solutions of the initial problem of systems of integro-partial differential equations”, Mathematical Notes, 102:1 (2017), 22–30 | DOI | MR | Zbl

[15] B.T. Kalimbetov, V.F. Safonov, “Integro-differentiated singularly perturbed equations with fast oscillating coefficients”, Bulletin of KarSU, series Mathematics, 94:2 (2019), 33–47

[16] A.A. Bobodzhanov, B.T. Kalimbetov, V.F. Safonov, “Integro-differential problem about parametric amplification and its asymptotical integration”, Int. J. Appl. Math., 33:2 (2020), 331–353 | DOI

[17] B.T. Kalimbetov, V.F. Safonov, “Regularization method for singularly perturbed integro-differential equations with rapidly oscillating coefficients and with rapidly changing kernels”, Axioms, 9:4(131) (2020) | DOI | MR

[18] V.F. Safonov, A.A. Bobodzhanov, Higher mathematics course. Singularly perturbed problems and the regularization method, textbook, Publishing house MEI, M., 2012