An analogue of the Hartogs lemma for $R$-analytic functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 196-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problem of $R$-analytic continuation of functions of several real variables which admit $R$-analytic continuation along parallel sections. We prove an analogue of the well-known Hartogs lemma for $R$-analytic functions.
Keywords: $R$-analytic functions, holomorphic functions, plurisubharmonic functions, Hartogs series.
Mots-clés : pluripolar sets
@article{JSFU_2022_15_2_a5,
     author = {Alimardon A. Atamuratov and Djurabay K. Tishabaev and Takhir T. Tuychiev},
     title = {An analogue of the {Hartogs} lemma for $R$-analytic functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {196--200},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a5/}
}
TY  - JOUR
AU  - Alimardon A. Atamuratov
AU  - Djurabay K. Tishabaev
AU  - Takhir T. Tuychiev
TI  - An analogue of the Hartogs lemma for $R$-analytic functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 196
EP  - 200
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a5/
LA  - en
ID  - JSFU_2022_15_2_a5
ER  - 
%0 Journal Article
%A Alimardon A. Atamuratov
%A Djurabay K. Tishabaev
%A Takhir T. Tuychiev
%T An analogue of the Hartogs lemma for $R$-analytic functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 196-200
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a5/
%G en
%F JSFU_2022_15_2_a5
Alimardon A. Atamuratov; Djurabay K. Tishabaev; Takhir T. Tuychiev. An analogue of the Hartogs lemma for $R$-analytic functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 196-200. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a5/

[1] A. Sadullaev, “Real analyticity of a $C^{\infty }$-germ at a origin”, Ann. Polon. Math., 2021 (Published online) | DOI | MR

[2] A.S. Sadullaev, E M. Chirka, “On continuation of functions with polar singularities”, Math. USSR-Sb., 60:2 (1988), 377–384 | DOI | MR | Zbl

[3] E.M. Chirka, “Rational approximations of holomorphic functions with singularities of finite order”, Math. USSR-Sb., 29:1 (1976), 123–138 | DOI | MR

[4] J. Bochnak, J. Siciak, “A characterization of analytic functions of several real variables”, Ann. Polon. Math., 123 (2019), 9–13 | DOI | MR | Zbl

[5] A. Sadullaev, “Rational approximation and pluripolar sets”, Math. USSR-Sb., 47:1 (1984), 91–113 | DOI | MR | Zbl

[6] A. Sadullaev, Holomorphic functions of several variables, Urgench State University Publishing Department, Urgench, 2005 (in Russian)

[7] A. Sadullaev, Pluripotential theory. Applications, Palmarium Academic Publishing, Germany, 2012