Mots-clés : soliton
@article{JSFU_2022_15_2_a3,
author = {Michal Fe\v{c}kan and Gayrat Urazboev and Iroda Baltaeva},
title = {Inverse scattering and loaded modified {Korteweg-de} {Vries} equation},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {176--185},
year = {2022},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a3/}
}
TY - JOUR AU - Michal Fečkan AU - Gayrat Urazboev AU - Iroda Baltaeva TI - Inverse scattering and loaded modified Korteweg-de Vries equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 176 EP - 185 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a3/ LA - en ID - JSFU_2022_15_2_a3 ER -
%0 Journal Article %A Michal Fečkan %A Gayrat Urazboev %A Iroda Baltaeva %T Inverse scattering and loaded modified Korteweg-de Vries equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 176-185 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a3/ %G en %F JSFU_2022_15_2_a3
Michal Fečkan; Gayrat Urazboev; Iroda Baltaeva. Inverse scattering and loaded modified Korteweg-de Vries equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 176-185. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a3/
[1] M.J. Ablowitz, H. Segur, Solitons And The Inverse Scattering Transform, SIAM, Philadelphia, PA, 1981 | MR | Zbl
[2] U.I. Baltaeva, “Solvability of the analogs of the problem Tricomi for the mixed type loaded equations with parabolic-hyperbolic operators”, Boundary Value Problems, 211 (2014), 2–12 | DOI | MR
[3] H. Demiray, “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves”, Chaos Soliton Fract, 42 (2009), 358–364 | DOI | MR | Zbl
[4] V.I. Karpman, E.M. Maslov, “Perturbation theory for solitons”, Zh. Eksp. Teor. Fiz., 73 (1977), 537–559 | MR
[5] N.A. Kudryashov, I.L. Chernyavskii, “Nonlinear waves in fluid flow through a viscoelastic tube”, Fluid Dynamics, 41 (2006), 49–62 | DOI | MR | Zbl
[6] P.D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[7] A.M. Nakhushev, “Loaded equations and their applications”, Differ. Uravn., 19 (1983), 86–94 | MR | Zbl
[8] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983 | MR
[9] G.U. Urazboev, I.I. Baltaeva, “On integration of the general loaded Korteweg-de vries equation with a self-consistent source”, Instruments and Systems: Monitoring, Control, and Diagnostics. Scientific journal, 10 (2019), 7–10 (in Russian) | DOI | MR
[10] G.U. Urazboev, A.B. Khasanov, “The integration of the mKdV equation with self-consistent source”, Proceedings of the 2nd International Conference “Function Spaces. Differential operators. Problems of mathematical education” Dedicated to the 80th anniversary of L. D. Kudryavtsev, FIZMATLIT, M., 2003, 340–349
[11] M. Wadati, “The exact solution of the modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 32 (1972), 16–81 | MR
[12] A.B. Yakhshimuratov, M.M. Matyokubov, “Integration of loaded Korteweg-de Vries equation in a class of periodic functions”, Russian Mathematics (Izv. VUZ.), 2:2 (2016), 72–76 | DOI | MR | Zbl