On ground states for the SOS model with competing interactions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 162-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study periodic and weakly periodic ground states for the SOS model with competing interactions on the Cayley tree of order two and three. Further, we study non periodic ground states for the SOS model with competing interactions on the Cayley tree of order two.
Keywords: Cayley tree, SOS model, periodic and weakly periodic ground states.
@article{JSFU_2022_15_2_a2,
     author = {Muzaffar M. Rahmatullaev and Bunyod U. Abraev},
     title = {On ground states for the {SOS} model with competing interactions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {162--175},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a2/}
}
TY  - JOUR
AU  - Muzaffar M. Rahmatullaev
AU  - Bunyod U. Abraev
TI  - On ground states for the SOS model with competing interactions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 162
EP  - 175
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a2/
LA  - en
ID  - JSFU_2022_15_2_a2
ER  - 
%0 Journal Article
%A Muzaffar M. Rahmatullaev
%A Bunyod U. Abraev
%T On ground states for the SOS model with competing interactions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 162-175
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a2/
%G en
%F JSFU_2022_15_2_a2
Muzaffar M. Rahmatullaev; Bunyod U. Abraev. On ground states for the SOS model with competing interactions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 2, pp. 162-175. http://geodesic.mathdoc.fr/item/JSFU_2022_15_2_a2/

[1] M.M. Rakhmatullaev, “Description of weak periodic ground states of Ising model with competing interactions on Cayley tree”, Appl. Math. Inf. Sci., 4 (2010), 237 | MR | Zbl

[2] R. Fernandez, Contour ensembles and the description of Gibbsian probability distri-butions at low temperature, 1998 | MR

[3] G.I. Botirov, U.A. Rozikov, “Potts model with competing interactions on the Cayley tree: The contour method”, Theoret. Math. Phys., 153 (2007), 1423 | DOI | MR | Zbl

[4] U.A. Rozikov, Gibbs Measures on Cayley Trees, World Scientific, Haversack, 2013 | MR | Zbl

[5] U.A. Rozikov, M.M. Rakhmatullaev, “Weakly periodic ground states and Gibbs measures for the Ising model with competing interactions on the Cayley tree”, Theoret. Math. Phys., 160 (2009), 1292 | DOI | MR | Zbl

[6] M.M. Rakhmatullaev, “Weakly periodic Gibbs measures and ground states for the Potts model with competing interactions on the Cayley tree”, Theoret. Math. Phys., 176 (2013), 1236 | DOI | MR | Zbl

[7] M.M. Rakhmatullaev, M.A. Rasulova, “Existence of weakly periodic ground states for the Potts model with competing interactions on the Cayley tree”, Dokl. Akad. nauk Resp. Uzbekistan, 10:3 (2013) (in Russian) | MR

[8] M.M. Rahmatullaev, M.A. Rasulova, “Periodic and Weakly Periodic Ground States for the Potts Model with Competing Interactions on the Cayley Tree”, Siberian Advances in Mathematics, 26:3 (2016), 215–229 | DOI | MR

[9] U.A. Rozikov, “A Constructive Description of Ground States and Gibbs Measures for Ising Model with Two-Step Interactions on Cayley Tree”, Jurnal of Statistical Physics, 122:2 (2006), 217–235 | DOI | MR | Zbl

[10] G.I Botirov, M.M. Rahmatullaev, “Ground states for Potts model with a countable set of spin values on a Cayley tree”, Algebra, complex analysis, and pluripotential theory, Springer Proc. Math. Stat., 264, 2018, 59–71 | MR | Zbl

[11] U.A. Rozikov, “A contour method on Cayley trees”, J. Stat. Phys., 130:4 (2008), 801–813 | DOI | MR | Zbl

[12] U.A. Rozikov, “On q-component models on Cayley tree: contour method”, Lett. Math. Phys., 71:1 (2005), 27–38 | DOI | MR | Zbl

[13] M.M. Rahmatullaev, B.U. Abraev, “Non-translation-invariant Gibbs measures of an SOS model on a Cayley tree”, Rep. Math. Phys., 86:3 (2020), 315–324 | DOI | MR | Zbl

[14] G.I. Botirov, “Anisotropic Ising Model with Countable Set of Spin Values on Cayley Tree”, Journal of Siberian Federal University, 10:3 (2017), 305–309 | DOI | MR | Zbl

[15] M.M. Rakhmatullaev, J.D. Dehqonov, “Weakly periodic Gibbs measures for the Ising model on the Cayley tree of order $k=2$”, Theor. Math. Phys., 206:2 (2021), 184–198 | DOI | MR

[16] B.U. Abraev, “On weakly periodic ground states for the SOS model”, Scientific Bulletin of Namangan State University, 2:3 (2020), 14–21 | MR