Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_1_a8, author = {Pavel P. Turchin and Sergey I. Burkov and Vladimir I. Turchin and Oleg N. Pletnev and Marina Yu. Chulkova and Anastasia G. Nechepuryshina}, title = {Anisotropy of the electromechanical characteristics of {SH-waves} and lamb waves in yttrium aluminum borate single crystals}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {80--87}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a8/} }
TY - JOUR AU - Pavel P. Turchin AU - Sergey I. Burkov AU - Vladimir I. Turchin AU - Oleg N. Pletnev AU - Marina Yu. Chulkova AU - Anastasia G. Nechepuryshina TI - Anisotropy of the electromechanical characteristics of SH-waves and lamb waves in yttrium aluminum borate single crystals JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 80 EP - 87 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a8/ LA - en ID - JSFU_2022_15_1_a8 ER -
%0 Journal Article %A Pavel P. Turchin %A Sergey I. Burkov %A Vladimir I. Turchin %A Oleg N. Pletnev %A Marina Yu. Chulkova %A Anastasia G. Nechepuryshina %T Anisotropy of the electromechanical characteristics of SH-waves and lamb waves in yttrium aluminum borate single crystals %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 80-87 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a8/ %G en %F JSFU_2022_15_1_a8
Pavel P. Turchin; Sergey I. Burkov; Vladimir I. Turchin; Oleg N. Pletnev; Marina Yu. Chulkova; Anastasia G. Nechepuryshina. Anisotropy of the electromechanical characteristics of SH-waves and lamb waves in yttrium aluminum borate single crystals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 80-87. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a8/
[1] D. Khomskii, “Trend: Classifying multiferroics: Mechanisms and effects”, Physics, 2:20 (2009) | DOI
[2] R. Ramesh, N.A. Spaldin, “Multiferroics: progress and prospects in thin films”, Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, 20–28 | DOI
[3] N.A. Spaldin, M. Fiebig, “The renaissance of magnetoelectric multiferroics”, Science, 309:5733 (2005), 391–392 | DOI
[4] K.C. Liang et al, “Giant magnetoelectric effect in HoAl$_3$(BO$_3$)$_4$”, Physical Review B, 83:18 (2011), 180417 | DOI
[5] A.A. Mukhin et al., “The giant magnetodielectric effect in the multiferroic SmFe$_3$(BO$_3$)$_4$”, Letters to the Journal of Experimental and Theoretical Physics, 93:5 (2011), 305–311 | DOI
[6] K.N. Girbachenya et al., “High-frequency Er$^{3+}$, Yb$^{3+}$: YAl$_3$(BO$_3$)$_4$ microchip laser with longitudinal diode pumping”, Devices and methods of measurement, 2:5 (2012), 79–81
[7] A.S. Aleksandrovsky et al., “Upconversion luminescence of YAl$_3$(BO$_3$)$_4$:(Yb$^{3+}$, Tm$^{3+}$) crystals”, Journal of Alloys and Compounds, 496:1–2 (2010), 18–21 | DOI
[8] G. Wang et al, Cr$^3$-doped borates-potential tunable laser crystals?, Radiation Effects and Defects in Solids, 136:1–4 (1995), 43–46 | DOI
[9] L. Zheng et al., “>1 MW Peak Power at 266 nm in Nonlinear YAl$_3$(BO$_3$)$_4$ (YAB) Single Crystal”, 2015 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2015 | DOI
[10] N.V. Volkov et al., “Magnetization, magnetoelectric polarization and specific heat of HoGa$_3$(BO$_3$)$_4$”, JETP Letters, 99:2 (2014), 67–75 | DOI
[11] A.I. Popov, D.I. Plokhov, A.K. Zvezdin, “Quantum theory of magnetoelectricity in rare-earth multiferroics: Nd, Sm, and Eu ferroborates”, Physical Review B, 87:2 (2013), 024413 | DOI
[12] A.K. Zvezdin et al., “On magnetoelectric effects in gadolinium ferroborat GdFe$_3$(BO$_3$)$_4$”, JETP Letters, 81:6 (2005), 272–276 | DOI
[13] T.N. Gaydamak et al., “Elastic and piezoelectric moduli of Nd and Sm ferroborates”, Low Temperature Physics, 41:8 (2015), 614–618 | DOI
[14] V.I. Zinenko et al., “Vibrational spectra, elastic, piezoelectric and magnetoelectric properties of HoFe$_3$(BO$_3$)$_4$ and HoA1$_3$(BO$_3$)$_4$ crystals”, Journal of Experimental and Theoretical Physics, 117:6 (2013), 1032–1041 | DOI
[15] G.A. Vziagina et al., “Magnetoelastic effects in terbium ferroborate”, Low Temperature Physics, 34:11 (2008), 901–908 | DOI
[16] P.P. Turchin et al., “Electromechanical Properties and Anisotropy of Acoustic Waves Characteristics in Single Crystals YAl$_3$(BO$_3$)$_4$”, Journal of Siberian Federal University. Mathematics $\$ Physics, 12:6 (2019), 756–771 | DOI | Zbl
[17] P.P. Turchin et al., “Application of DMA 242 C for Quasi-Static Measurements of Piezoelectric Properties of Solids”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:1 (2020), 97–103 | DOI | Zbl
[18] D. Royer, E. Dieulesaint, Elastic waves in solids II: generation, acousto-optic interaction, applications, Springer Science Business Medial, 1999 | MR
[19] I.A. Viktorov, Rayleigh andLamb Waves, Springer US, 1967
[20] J. Rajagopalan, K. Balasubramaniam, C.V. Krishnamurthy, “A phase reconstruction algorithm for Lamb wave based structural health monitoring of anisotropic multilayered composite plates”, The Journal of the Acoustical Society of America, 119:2 (2006), 872–878 | DOI
[21] K.S. Aleksandrov, G.T. Prodaivoda, Anisotropy of the elastic properties of minerals and rocks, Publishing house of the SB RAS, Novosibirsk, 2000
[22] J.F. Nye et al., Physical properties of crystals: their representation by tensors and matrices, Oxford university press, 1985
[23] S.I. Burkov, O.P. Zolotova, B.P. Sorokin, P P. Turchin, “Calculation of Thermostable Directions and the Effect of External Electric Field on the Propagation of Lamb and SH Waves in a Langasite_Crystal Plate”, Acoustical Physics, 58:6 (2012), 650–657 | DOI
[24] I.E. Kuznetsova, B.D. Zaytsev, A.A. Teplykh, I.A. Borodina, “Hybridization of acoustic waves in piezoelectric plates”, Acoustical Physics, 53:1 (2007), 64–69 | DOI