Some new congruence identities of general partition for $p_r(n)$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we deduce some new congruences modulo 3 and 5 for $p_r(n)$, where $r \in \{-(3\lambda+3), -(5\lambda+3) \mid \lambda \text{ is any non-negative integer}\}$. Our emphasis throughout this paper is to exhibit the use of $q$-identities to generate the congruences for $p_r(n)$.
Keywords: $q$-identity, Ramanujan's general partition function congruences.
Mots-clés : partition congruence
@article{JSFU_2022_15_1_a7,
     author = {B. R. Srivatsa Kumar and Shruthi Shruthi and Halgar J. Gowtham},
     title = {Some new congruence identities of general partition for $p_r(n)$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/}
}
TY  - JOUR
AU  - B. R. Srivatsa Kumar
AU  - Shruthi Shruthi
AU  - Halgar J. Gowtham
TI  - Some new congruence identities of general partition for $p_r(n)$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 75
EP  - 79
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/
LA  - en
ID  - JSFU_2022_15_1_a7
ER  - 
%0 Journal Article
%A B. R. Srivatsa Kumar
%A Shruthi Shruthi
%A Halgar J. Gowtham
%T Some new congruence identities of general partition for $p_r(n)$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 75-79
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/
%G en
%F JSFU_2022_15_1_a7
B. R. Srivatsa Kumar; Shruthi Shruthi; Halgar J. Gowtham. Some new congruence identities of general partition for $p_r(n)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 75-79. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/

[1] G.E. Andrews, “The Theory of Partitions”, Encyclopedia of Mathematics and its Applications, v. 2, ed. G.-C. Rota, Addison-Wesley, Reading, 1976 ; Reprinted: Cambridge Univ. Press, London–New York, 1984 | MR | Zbl | Zbl

[2] A.O.L. Atkin, “Ramanujan congruences for $p_k(n)$”, Canad. J. Math., 20 (1968), 67–78 | DOI | MR | Zbl

[3] N.D. Baruah, K. K. Ojah, “Some congruences deducible from Ramanujan's cubic continued fraction”, Int. J. Number Theory, 7 (2011), 1331–134 | DOI | MR

[4] N.D. Baruah, B. K. Sarmah, “Identities and congruences for the general partition and Ramanujan $\tau$ functions”, Indian J. of pure and Appl. Math., 44:5 (2013), 643–671 | DOI | MR | Zbl

[5] B.C. Berndt, Ramanujan's Notebooks, v. III, Springer, New York, 1991 | MR

[6] M. Boylan, “Exceptional congruences for powers of the partition functions”, Acta Arith., 111 (2004), 187–203 | DOI | MR | Zbl

[7] W.Y.C. Chen, D.K. Du, Q.H. Hou, L. H. Sun, “Congruences of multi-partition functions modulo powers of primes”, Ramanujan J., 35 (2014), 1–19 | DOI | MR | Zbl

[8] H.M. Farkas, I. Kra, “Ramanujan's partition identities”, Contemporary Math., 240 (1999), 111–130 | DOI | MR | Zbl

[9] J.M. Gandhi, “Congruences for $p_k(n)$ and Ramanujan's $\tau$ function”, Amer. Math. Mon., 70 (1963), 265–274 | MR | Zbl

[10] B. Gordon, “Ramanujan congruences for $p_k\pmod{11^r}$”, Glasgow Math. J., 24 (1983), 107–123 | DOI | MR | Zbl

[11] P. Hammond, R. Lewis, “Congruences in ordered pairs of partitions”, Int. J. Math. Math. Sci., 45–48 (2004), 2509–2512 | DOI | MR | Zbl

[12] I. Kiming, J. B. Olsson, “Congruences like Ramanujan's for powers of the partition function”, Arch. Math., (Basel), 59:4 (1992), 348–360 | DOI | MR | Zbl

[13] M. Newmann, “An identity for the coefficients of certain modular forms”, J. Lond. Math. Soc., 30 (1955), 488–493 | DOI | MR

[14] M. Newmann, “Congruence for the coefficients of modular forms and some new congruences for the partition function”, Canad. J. Math., 9 (1957), 549–552 | DOI | MR

[15] M. Newmann, “Some theorems about $p_k(n)$”, Canad. J. Math., 9 (1957), 68–70 | DOI | MR

[16] K.G. Ramanathan, “Identities and congruences of the Ramanujan type”, Canad. J. Math., 2 (1950), 168–178 | DOI | MR | Zbl

[17] S. Ramanujan, “Some properties of $p(n),$ the number of partitions of $n$”, Proc. Cambridge Phillos. Soc., 19 (1919), 207–210 | Zbl

[18] S. Ramanujan, “Congruence properties of partitions”, Proc. Lond. Math. Soc., 18 (1920) (Records of 13 March 1919) | MR

[19] S. Ramanujan, “Congruence properties of partitions”, Math. Z., 1921, 147–153 | DOI | MR

[20] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927 ; reprinted Chelsea, New York, 1962; reprinted Narosa, New Delhi, 1987; reprinted American Mathematical Society, Providence, 2000 | Zbl

[21] N. Saikia, J. Chetry, “Infinite families of congruences modulo $7$ for Ramanujan's general partition function”, Ann. Math. Quebec., 42:1 (2018), 127–132 | DOI | MR | Zbl

[22] Shruthi, B.R. Srivatsa Kumar, “Arithmetic identities of Ramanujan's general partition function for Modulo 17”, Proceedings of the Jangjeon Mathematical Society, 22:4 (2019), 625–630 | DOI | MR | Zbl

[23] B.R. Srivatsa Kumar, Shruthi, D. Ranganatha, “Some new Congruences Modulo 5 for General Partition Function”, Russian Mathematics, 64 (2020), 73–78 | DOI | MR | Zbl

[24] D. Tang, “Congruences modulo powers of $5$ for $k$-colored partitions”, J. Number Theory, 187 (2018), 198–214 | DOI | MR | Zbl