Some new congruence identities of general partition for $p_r(n)$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 75-79

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we deduce some new congruences modulo 3 and 5 for $p_r(n)$, where $r \in \{-(3\lambda+3), -(5\lambda+3) \mid \lambda \text{ is any non-negative integer}\}$. Our emphasis throughout this paper is to exhibit the use of $q$-identities to generate the congruences for $p_r(n)$.
Keywords: $q$-identity, Ramanujan's general partition function congruences.
Mots-clés : partition congruence
@article{JSFU_2022_15_1_a7,
     author = {B. R. Srivatsa Kumar and Shruthi Shruthi and Halgar J. Gowtham},
     title = {Some new congruence identities of general partition for $p_r(n)$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/}
}
TY  - JOUR
AU  - B. R. Srivatsa Kumar
AU  - Shruthi Shruthi
AU  - Halgar J. Gowtham
TI  - Some new congruence identities of general partition for $p_r(n)$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 75
EP  - 79
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/
LA  - en
ID  - JSFU_2022_15_1_a7
ER  - 
%0 Journal Article
%A B. R. Srivatsa Kumar
%A Shruthi Shruthi
%A Halgar J. Gowtham
%T Some new congruence identities of general partition for $p_r(n)$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 75-79
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/
%G en
%F JSFU_2022_15_1_a7
B. R. Srivatsa Kumar; Shruthi Shruthi; Halgar J. Gowtham. Some new congruence identities of general partition for $p_r(n)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 75-79. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a7/