Density problem some of the functional spaces for studying dynamic equations on time scales
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study some topological density properties of certain functional spaces on the time scales and its relationships to Lebesgue spaces in the sense of $\nabla $-integrals on time scales. Our results are provided with applications.
Keywords: density, measure.
Mots-clés : time scale
@article{JSFU_2022_15_1_a5,
     author = {Fatima Zohra Ladrani and Amin Benaissa Cherif and Abderrahmane Beniani and Khaled Zennir and Svetlin Georgiev},
     title = {Density problem some of the functional spaces for studying dynamic equations on time scales},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {46--55},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/}
}
TY  - JOUR
AU  - Fatima Zohra Ladrani
AU  - Amin Benaissa Cherif
AU  - Abderrahmane Beniani
AU  - Khaled Zennir
AU  - Svetlin Georgiev
TI  - Density problem some of the functional spaces for studying dynamic equations on time scales
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 46
EP  - 55
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/
LA  - en
ID  - JSFU_2022_15_1_a5
ER  - 
%0 Journal Article
%A Fatima Zohra Ladrani
%A Amin Benaissa Cherif
%A Abderrahmane Beniani
%A Khaled Zennir
%A Svetlin Georgiev
%T Density problem some of the functional spaces for studying dynamic equations on time scales
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 46-55
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/
%G en
%F JSFU_2022_15_1_a5
Fatima Zohra Ladrani; Amin Benaissa Cherif; Abderrahmane Beniani; Khaled Zennir; Svetlin Georgiev. Density problem some of the functional spaces for studying dynamic equations on time scales. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/

[1] R.P Agarwal, V. Otero-Espinar, K. Perera, D.R. Vivero, “Basic properties of Sobolev's spaces on time scales”, Adv. Differ. Equ., 2006, 38121 | MR | Zbl

[2] M. Bohner, A.C. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl

[3] A. Benaissa cherif, A. Hammoudi, F.Z. Ladrani, “Density problems in $L_{p}^{\Delta }\left( \mathbb{T},\mathbb{R}\right)$ space”, Elec. J. Math. Anal. Appl., 1:2 (2013), 178–187 | Zbl

[4] A. Benaissa cherif, F.Z. Ladrani, “Density problems in Sobolev's spaces on time scales”, Kragujevac J. Math., 45 (2021), 215–223 | DOI | MR | Zbl

[5] B. Bendouma, A. Benaissa Cherif, A. Hammoudi, “Systems of first-order nabla dynamic equations on time scales”, Malaya J. Mat., 6 (2018), 619–624 | DOI | MR

[6] M. Bohner, A.C. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser Boston, Inc., Boston, MA, 2003 | MR | Zbl

[7] H. Brezis, Analyse Fonctionnelle: Thèorie et Applications, Masson, Paris, 1996 | MR

[8] A. Cabada, D. Vivero, “Expression of the Lebesgue $ \Delta $-integral on time scales as a usual Lebesgue integral, application to the calculus of $\Delta $-antiderivatives”, Math. Comp. Modelling, 43 (2006), 194–207 | DOI | MR | Zbl

[9] S. Hilger, Ein Ma$\ss $kettenakalk$\ddot{u}$l mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 | Zbl

[10] F.Z. Ladrani, A. Benaissa Cherif, “Hardy-Sobolev-Mazya inequality on time scale and application to the boundary value problems”, Elec. J. Math. Anal. Appl., 6 (2018), 137–143 | MR | Zbl

[11] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996 | MR | Zbl