Density problem some of the functional spaces for studying dynamic equations on time scales
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 46-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study some topological density properties of certain functional spaces on the time scales and its relationships to Lebesgue spaces in the sense of $\nabla $-integrals on time scales. Our results are provided with applications.
Keywords: density, measure.
Mots-clés : time scale
@article{JSFU_2022_15_1_a5,
     author = {Fatima Zohra Ladrani and Amin Benaissa Cherif and Abderrahmane Beniani and Khaled Zennir and Svetlin Georgiev},
     title = {Density problem some of the functional spaces for studying dynamic equations on time scales},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {46--55},
     year = {2022},
     volume = {15},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/}
}
TY  - JOUR
AU  - Fatima Zohra Ladrani
AU  - Amin Benaissa Cherif
AU  - Abderrahmane Beniani
AU  - Khaled Zennir
AU  - Svetlin Georgiev
TI  - Density problem some of the functional spaces for studying dynamic equations on time scales
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 46
EP  - 55
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/
LA  - en
ID  - JSFU_2022_15_1_a5
ER  - 
%0 Journal Article
%A Fatima Zohra Ladrani
%A Amin Benaissa Cherif
%A Abderrahmane Beniani
%A Khaled Zennir
%A Svetlin Georgiev
%T Density problem some of the functional spaces for studying dynamic equations on time scales
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 46-55
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/
%G en
%F JSFU_2022_15_1_a5
Fatima Zohra Ladrani; Amin Benaissa Cherif; Abderrahmane Beniani; Khaled Zennir; Svetlin Georgiev. Density problem some of the functional spaces for studying dynamic equations on time scales. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/

[1] R.P Agarwal, V. Otero-Espinar, K. Perera, D.R. Vivero, “Basic properties of Sobolev's spaces on time scales”, Adv. Differ. Equ., 2006, 38121 | MR | Zbl

[2] M. Bohner, A.C. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl

[3] A. Benaissa cherif, A. Hammoudi, F.Z. Ladrani, “Density problems in $L_{p}^{\Delta }\left( \mathbb{T},\mathbb{R}\right)$ space”, Elec. J. Math. Anal. Appl., 1:2 (2013), 178–187 | Zbl

[4] A. Benaissa cherif, F.Z. Ladrani, “Density problems in Sobolev's spaces on time scales”, Kragujevac J. Math., 45 (2021), 215–223 | DOI | MR | Zbl

[5] B. Bendouma, A. Benaissa Cherif, A. Hammoudi, “Systems of first-order nabla dynamic equations on time scales”, Malaya J. Mat., 6 (2018), 619–624 | DOI | MR

[6] M. Bohner, A.C. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser Boston, Inc., Boston, MA, 2003 | MR | Zbl

[7] H. Brezis, Analyse Fonctionnelle: Thèorie et Applications, Masson, Paris, 1996 | MR

[8] A. Cabada, D. Vivero, “Expression of the Lebesgue $ \Delta $-integral on time scales as a usual Lebesgue integral, application to the calculus of $\Delta $-antiderivatives”, Math. Comp. Modelling, 43 (2006), 194–207 | DOI | MR | Zbl

[9] S. Hilger, Ein Ma$\ss $kettenakalk$\ddot{u}$l mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 | Zbl

[10] F.Z. Ladrani, A. Benaissa Cherif, “Hardy-Sobolev-Mazya inequality on time scale and application to the boundary value problems”, Elec. J. Math. Anal. Appl., 6 (2018), 137–143 | MR | Zbl

[11] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996 | MR | Zbl