Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_1_a5, author = {Fatima Zohra Ladrani and Amin Benaissa Cherif and Abderrahmane Beniani and Khaled Zennir and Svetlin Georgiev}, title = {Density problem some of the functional spaces for studying dynamic equations on time scales}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {46--55}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/} }
TY - JOUR AU - Fatima Zohra Ladrani AU - Amin Benaissa Cherif AU - Abderrahmane Beniani AU - Khaled Zennir AU - Svetlin Georgiev TI - Density problem some of the functional spaces for studying dynamic equations on time scales JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 46 EP - 55 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/ LA - en ID - JSFU_2022_15_1_a5 ER -
%0 Journal Article %A Fatima Zohra Ladrani %A Amin Benaissa Cherif %A Abderrahmane Beniani %A Khaled Zennir %A Svetlin Georgiev %T Density problem some of the functional spaces for studying dynamic equations on time scales %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 46-55 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/ %G en %F JSFU_2022_15_1_a5
Fatima Zohra Ladrani; Amin Benaissa Cherif; Abderrahmane Beniani; Khaled Zennir; Svetlin Georgiev. Density problem some of the functional spaces for studying dynamic equations on time scales. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 46-55. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a5/
[1] R.P Agarwal, V. Otero-Espinar, K. Perera, D.R. Vivero, “Basic properties of Sobolev's spaces on time scales”, Adv. Differ. Equ., 2006, 38121 | MR | Zbl
[2] M. Bohner, A.C. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[3] A. Benaissa cherif, A. Hammoudi, F.Z. Ladrani, “Density problems in $L_{p}^{\Delta }\left( \mathbb{T},\mathbb{R}\right)$ space”, Elec. J. Math. Anal. Appl., 1:2 (2013), 178–187 | Zbl
[4] A. Benaissa cherif, F.Z. Ladrani, “Density problems in Sobolev's spaces on time scales”, Kragujevac J. Math., 45 (2021), 215–223 | DOI | MR | Zbl
[5] B. Bendouma, A. Benaissa Cherif, A. Hammoudi, “Systems of first-order nabla dynamic equations on time scales”, Malaya J. Mat., 6 (2018), 619–624 | DOI | MR
[6] M. Bohner, A.C. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser Boston, Inc., Boston, MA, 2003 | MR | Zbl
[7] H. Brezis, Analyse Fonctionnelle: Thèorie et Applications, Masson, Paris, 1996 | MR
[8] A. Cabada, D. Vivero, “Expression of the Lebesgue $ \Delta $-integral on time scales as a usual Lebesgue integral, application to the calculus of $\Delta $-antiderivatives”, Math. Comp. Modelling, 43 (2006), 194–207 | DOI | MR | Zbl
[9] S. Hilger, Ein Ma$\ss $kettenakalk$\ddot{u}$l mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 | Zbl
[10] F.Z. Ladrani, A. Benaissa Cherif, “Hardy-Sobolev-Mazya inequality on time scale and application to the boundary value problems”, Elec. J. Math. Anal. Appl., 6 (2018), 137–143 | MR | Zbl
[11] V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996 | MR | Zbl