On a multidimensional version of the principal theorem of difference equations with constant coefficients
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 125-132
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we consider systems of linear difference equations with discrete characteristic sets. A multidimensional version of the principal theorem of linear difference equations with constant coefficients is formulated and proved.
Keywords:
linear difference equations, characteristic set, multiple roots.
@article{JSFU_2022_15_1_a13,
author = {Evgeny D. Leinartas and August K. Tsikh},
title = {On a multidimensional version of the principal theorem of difference equations with constant coefficients},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {125--132},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/}
}
TY - JOUR AU - Evgeny D. Leinartas AU - August K. Tsikh TI - On a multidimensional version of the principal theorem of difference equations with constant coefficients JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 125 EP - 132 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/ LA - en ID - JSFU_2022_15_1_a13 ER -
%0 Journal Article %A Evgeny D. Leinartas %A August K. Tsikh %T On a multidimensional version of the principal theorem of difference equations with constant coefficients %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 125-132 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/ %G en %F JSFU_2022_15_1_a13
Evgeny D. Leinartas; August K. Tsikh. On a multidimensional version of the principal theorem of difference equations with constant coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/