Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2022_15_1_a13, author = {Evgeny D. Leinartas and August K. Tsikh}, title = {On a multidimensional version of the principal theorem of difference equations with constant coefficients}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {125--132}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/} }
TY - JOUR AU - Evgeny D. Leinartas AU - August K. Tsikh TI - On a multidimensional version of the principal theorem of difference equations with constant coefficients JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2022 SP - 125 EP - 132 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/ LA - en ID - JSFU_2022_15_1_a13 ER -
%0 Journal Article %A Evgeny D. Leinartas %A August K. Tsikh %T On a multidimensional version of the principal theorem of difference equations with constant coefficients %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2022 %P 125-132 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/ %G en %F JSFU_2022_15_1_a13
Evgeny D. Leinartas; August K. Tsikh. On a multidimensional version of the principal theorem of difference equations with constant coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a13/
[1] R. Stanley, Enumerative combinatorics, v. 1, Wadsworth/Cole, Monterey, California, 1986 | MR | Zbl
[2] E.K. Leinartas, D.E. Leinartas, Multidimensional difference equations, schoolbook, SFU, Krasnoyarsk, 2010
[3] E.K. Leinartas, M. Passare, A.K. Tsikh, “Multidimensional versions of Poincare's theorem for difference equations”, Sb. Math., 199:9–10 (2008), 1505–1521 | DOI | MR | Zbl
[4] A.K. Tsikh, “Bezout's theorem in the space of functions theory. Solution of systems of algebraic functions”, Some problems of multidimensional complex analysis, Acad. Nauk SSSR, Sibirsk. Otdel., Inst. Fiz., Krasnoyarsk, 1980, 185–196 ; 270–271 | MR
[5] A.O. Gel'fond, Calculus of finite differences, Hindustan Publishing Corp., Delhi, 1971 | MR | Zbl
[6] B.V. Shabat, Introduction to complex analysis, v. II, Functions of several variables, American Mathematical Society, Providence, RI, 1992 | MR | Zbl
[7] A.K. Tsikh, Higher-dimensional residues and their applications, “Nauka” Sibirsk. Otdel., Novosibirsk, 1988 (in Russian) | MR
[8] V.I. Arnol'd, S.M. Gusejn-Zade, A.N. Varchenko, Singularities of differentiable maps, v. I, Monogr. Math., 82, The classification of critical points, caustics and wave fronts, Birkhäuser, Boston, MA, 1985 | MR | Zbl
[9] A.P. Južakov, A.K. Tsikh, “The multiplicity of the zero of a system of holomorphic functions”, Siberian Math. J., 19:3 (1978), 489–492 | DOI | MR
[10] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Prinston, New Jersey, 1968 | MR | Zbl
[11] E.M. Chirka, Complex analysis sets, Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers Group, Dordrecht, 1989 | MR
[12] D. Alpay, A. Yger, “About a non-standard interpolation problem”, Comput. Methods Funct. Theory, 19:1 (2019), 97–115 | DOI | MR | Zbl
[13] A. Vidras, A. Yger, “Bergman-Weil expansion for holomorphic functions”, Math. Ann., 2021 | DOI