The Euler--Maclaurin formula in the problem of summation over lattice points of a simplex
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 108-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of summation over lattice points of a simplex we find an analog of the Euler–Maclaurin formula for discrete primitive function and the sum.
Keywords: summation of functions, a discrete primitive function, the Euler–Maclaurin formula.
@article{JSFU_2022_15_1_a11,
     author = {Evgeniy K. Leinartas and Olga A. Shishkina},
     title = {The {Euler--Maclaurin} formula in the problem of summation over lattice points of a simplex},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {108--113},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a11/}
}
TY  - JOUR
AU  - Evgeniy K. Leinartas
AU  - Olga A. Shishkina
TI  - The Euler--Maclaurin formula in the problem of summation over lattice points of a simplex
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2022
SP  - 108
EP  - 113
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a11/
LA  - en
ID  - JSFU_2022_15_1_a11
ER  - 
%0 Journal Article
%A Evgeniy K. Leinartas
%A Olga A. Shishkina
%T The Euler--Maclaurin formula in the problem of summation over lattice points of a simplex
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2022
%P 108-113
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a11/
%G en
%F JSFU_2022_15_1_a11
Evgeniy K. Leinartas; Olga A. Shishkina. The Euler--Maclaurin formula in the problem of summation over lattice points of a simplex. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 15 (2022) no. 1, pp. 108-113. http://geodesic.mathdoc.fr/item/JSFU_2022_15_1_a11/

[1] G. Hardy, Divergent series, Oxford University Press, London, 1949 | MR | Zbl

[2] A.O. Gelfond, Finite Difference Calculus, KomKniga, M., 2006 (in Russian) | MR

[3] A.V. Ustinov, “A Discrete Analog of Euler's Summation Formula”, Mat. notes, 71:6 (2002), 851–856 | DOI | MR | Zbl

[4] A.V. Ustinov, “A Discrete Analog of the Poisson Summation Formula”, Mat. notes, 73:1 (2003), 97–102 | DOI | MR | Zbl

[5] S.P. Tsarev, “On the rational summation problem”, Programming and computer software, 31:2 (2005), 56–59 | DOI | MR | Zbl

[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl

[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl

[8] O.A. Shishkina, “The Euler-Maclaurin Formula for Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 13 (2015), 56–71 | Zbl

[9] O.A. Shishkina, “Bernoulli Polynomials in Several Variables and Summation of Monomials over Lattice Points of a Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 16 (2016), 89–101 | Zbl

[10] O.A. Shishkina, “The Euler-Maclaurin formula and differential operator of infinite order”, Journal of Siberian Federal University, Mathematics $\$ Physics, 8:1 (2015), 86–93 | DOI | MR | Zbl

[11] A.P. Lyapin, S. Chandragiri, “Generating Functions for Vector Partitions and a Basic Recurrence Relation”, Journal of Difference Equations and Applications, 25:4 (2019), 551–559 | MR

[12] E.K. Leinartas, O.A. Shishkina, “The Discrete Analog of the Newton-Leibniz Formula in the Problem of Summation over Simplex Lattice Points”, Journal of Siberian Federal Univ. Mathematics $\$ Physics, 12:4 (2019), 503–508 | DOI | MR | Zbl

[13] A.V. Pukhlikov, A.G. Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR

[14] Yu.A. Dubinsky, The Cauchy problem in a complex area, MPEI Publishing House, M., 1996 (in Russian)