Explicit-implicit schemes for calculating the dynamics of layered media with nonlinear conditions at contact boundaries
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 768-778.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of dynamic loading of a deformable solid medium containing slip planes with nonlinear slip conditions on them. An explicit-implicit scheme was constructed for the numerical solution of the constitutive system of equations, which exactly reduces to correcting the stress tensor values after performing the elastic step. An implicit approximation of the constitutive relations containing a small parameter in the denominator of the nonlinear free term was used with the second order of the approximation. The correction procedure is applicable for those cases when the viscosity parameter of interlayers providing the sliding mode of the contact boundaries is not small. The solution of the problem of the seismic waves propagation in an inhomogeneous fractured geological massif in a two-dimensional case was obtained numerically.
Keywords: layered media, fractured media, numerical simulation, grid-characteristic method, slip conditions.
Mots-clés : explicit-implicit method
@article{JSFU_2021_14_6_a9,
     author = {Ilia S. Nikitin and Vasily I. Golubev},
     title = {Explicit-implicit schemes for calculating the dynamics of layered media with nonlinear conditions at contact boundaries},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {768--778},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a9/}
}
TY  - JOUR
AU  - Ilia S. Nikitin
AU  - Vasily I. Golubev
TI  - Explicit-implicit schemes for calculating the dynamics of layered media with nonlinear conditions at contact boundaries
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 768
EP  - 778
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a9/
LA  - en
ID  - JSFU_2021_14_6_a9
ER  - 
%0 Journal Article
%A Ilia S. Nikitin
%A Vasily I. Golubev
%T Explicit-implicit schemes for calculating the dynamics of layered media with nonlinear conditions at contact boundaries
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 768-778
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a9/
%G en
%F JSFU_2021_14_6_a9
Ilia S. Nikitin; Vasily I. Golubev. Explicit-implicit schemes for calculating the dynamics of layered media with nonlinear conditions at contact boundaries. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 768-778. http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a9/

[1] M. Dumbser, M. Kaser, J. De La Puente, “Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D”, Geophysical Journal International, 171 (2007), 665–694 | DOI

[2] J.T. Etgen, M.J.O'Brien, “Computational methods for large-scale 3D acoustic finite-difference modeling: a tutorial”, Geophysics, 72 (2007), SM223–SM230 | DOI

[3] S. Hestholm, “Acoustic VTI modeling using high-order finite differences”, Geophysics, 74 (2009), T67–T73 | DOI

[4] J.W.D. Hobro, C.H. Chapman, J.O.A. Robertsson, “A method for correcting acoustic finite-difference amplitudes for elastic effects”, Geophysics, 79 (2014), T243–T255 | DOI

[5] J. Virieux, H. Calandra, R.E. Plessix, “A Review of the Spectral, Pseudo-Spectral, Finite-Difference and Finite-Element Modelling Techniques for Geophysical Imaging”, Geophysical Prospecting, 59:5 (2011), 794–813 | DOI

[6] J.M. Carcione, C. Herman Gerard, P.E. Kroode, “Y2K Review Article: Seismic Modeling”, Rev. Lit. Arts Amer., 67:4 (2002), 1304–1325

[7] V. Lisitsa, V. Tcheverda, C. Botter, “Combination of the Discontinuous Galerkin Method with Finite Differences for Simulation of Seismic Wave Propagation”, J. Comput. Phys., 311 (2016), 142–157 | DOI | Zbl

[8] V.M. Sadovskii, O.V. Sadovskaya, “Supercomputer Modeling of Wave Propagation in Blocky Media Accounting Fractures of Interlayers”, Advanced Structured Materials, 122 (2020), 379–398 | DOI

[9] V.M. Sadovskii, O.V. Sadovskaya, I.E. Petrakov, “On the theory of constitutive equations for composites with different resistance in compression and tension”, Composite Structures, 268 (2021), 113921 | DOI

[10] V.I. Golubev, “The Usage of Grid-Characteristic Method in Seismic Migration Problems”, Smart Innovation, Systems and Technologies, 133 (2019), 143–155 | DOI

[11] I.S. Nikitin, “Dynamic models of layered and block media with slip, friction, and separation”, Mechanics of Solids, 43:4 (2008), 652–661 | DOI

[12] N.G. Burago, I.S. Nikitin, “Improved model of a layered medium with slip on the contact boundaries”, Journal of Applied Mathematics and Mechanics, 80:2 (2016), 164–172 | DOI | Zbl

[13] V. Golubev, I. Nikitin, Y. Golubeva, I. Petrov, “Numerical simulation of the dynamic loading process of initially damaged media”, AIP Conference Proceedings, 2309 (2020), 0033949

[14] V. Golubev, I. Nikitin, A. Ekimenko, “Simulation of seismic responses from fractured MARMOUSI2 model”, AIP Conference Proceedings, 2312 (2020), 050006 | DOI

[15] V.I. Golubev, N.I. Khokhlov, I.S. Nikitin, M.A. Churyakov, “Application of compact grid-characteristic schemes for acoustic problems”, Journal of Physics: Conference Series, 1479:1 (2020), 012058 | DOI

[16] V. Golubev, A. Shevchenko, I. Petrov, “Simulation of Seismic Wave Propagation in a Multicomponent Oil Deposit Model”, International Journal of Applied Mechanics, 12:8 (2020), 2050084 | DOI