Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 756-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives insights into modeling and well-posedness analysis driven by cyclic behavior of particular rate-independent constitutive equations based on the framework of hypoplasticity and on the elastoplastic concept with nonlinear kinematic hardening. Compared to the classical concept of elastoplasticity, in hypoplasticity there is no need to decompose the deformation into elastic and plastic parts. The two different types of nonlinear approaches show some similarities in the structure of the constitutive relations, which are relevant for describing irreversible material properties. These models exhibit unlimited ratchetting under cyclic loading. In numerical simulation it will be demonstrated, how a shakedown behavior under cyclic loading can be achieved with a slightly enhanced simple hypoplastic equations proposed by Bauer.
Keywords: plasticity, hypoplasticity, rate-independent system, hysteresis, cyclic behaviour, modeling, well-posedness, numerical simulation.
@article{JSFU_2021_14_6_a8,
     author = {Victor A. Kovtunenko and Erich Bauer and J\'an Elia\v{s} and Pavel Krej\v{c}{\'\i} and Giselle A. Monteiro and Lenka Strakov\'a (Siv\'akov\'a)},
     title = {Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {756--767},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a8/}
}
TY  - JOUR
AU  - Victor A. Kovtunenko
AU  - Erich Bauer
AU  - Ján Eliaš
AU  - Pavel Krejčí
AU  - Giselle A. Monteiro
AU  - Lenka Straková (Siváková)
TI  - Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 756
EP  - 767
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a8/
LA  - en
ID  - JSFU_2021_14_6_a8
ER  - 
%0 Journal Article
%A Victor A. Kovtunenko
%A Erich Bauer
%A Ján Eliaš
%A Pavel Krejčí
%A Giselle A. Monteiro
%A Lenka Straková (Siváková)
%T Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 756-767
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a8/
%G en
%F JSFU_2021_14_6_a8
Victor A. Kovtunenko; Erich Bauer; Ján Eliaš; Pavel Krejčí; Giselle A. Monteiro; Lenka Straková (Siváková). Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 6, pp. 756-767. http://geodesic.mathdoc.fr/item/JSFU_2021_14_6_a8/

[1] B.D. Annin, V.A. Kovtunenko, V.M. Sadovskii, “Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks”, Analysis, Modelling, Optimization, and Numerical Techniques, Springer Proc. Math. Stat., 121, eds. G.O. Tost, O. Vasilieva, 2015, 49–56 | Zbl

[2] P.J. Armstrong, C.O. Frederick, A mathematical representation of the multiaxial Bauschinger effect, C.E.G.B., Report RD/B/N, No 731, 1966

[3] E. Bauer, “Calibration of a comprehensive hypoplastic model for granular materials”, Soils Found., 36 (1996), 13–26 | DOI

[4] E. Bauer, “Conditions for embedding Casagrande's critical states into hypoplasticity”, Mech. Cohes.-Frict. Mat., 5 (2000), 125–148 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] E. Bauer, “Modelling limit states within the framework of hypoplasticity”, AIP Conf. Proc., 1227, eds. J. Goddard, P. Giovine, J.T. Jenkin, 2010, 290–305 | DOI

[6] E. Bauer, V.A. Kovtunenko, P. Krejčí, N. Krenn, L. Siváková, A.V. Zubkova, “Modified model for proportional loading and unloading of hypoplastic materials”, Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications, Trends in Mathematics, 11, eds. A. Korobeinikov, M. Caubergh, T.Lázaro, J. Sardanyés, Birkhäuser, Ham, 2019, 201–210 | DOI

[7] E. Bauer, V.A. Kovtunenko, P. Krejčí, N. Krenn, L. Siváková. A.V. Zubkova, “On proportional deformation paths in hypoplasticity”, Acta Mechanica, 231 (2020), 1603–1619 | DOI | Zbl

[8] E. Bauer, W. Wu, “A hypoplastic model for granular soils under cyclic loading”, Modern Approaches to Plasticity, ed. D. Kolymbas, Elsevier, 1993, 247–258 | DOI

[9] A.F. Bower, “Cyclic hardening properties of hard-drawn copper and rail steel”, J. Mech. Phys. Solids, 37 (1989), 455–470 | DOI

[10] M. Brokate, P. Krejčí, “Maximum norm wellposedness of nonlinear kinematic hardening models”, Contin. Mech. Thermodyn., 9 (1997), 365–380 | DOI | Zbl

[11] M. Brokate, P. Krejčí, “Wellposedness of kinematic hardening models in elastoplasticity”, Math. Model. Num. Anal., 32 (1998), 177–209 | DOI | Zbl

[12] M. Brokate, P. Krejčí, “On the wellposedness of the Chaboche model”, Control and Estimation of Distributed Parameter Systems, Int. Series Num. Math., 26, eds. W. Desch, F. Kappel, K. Kunisch, Birkhäuser, Basel, 1998, 67–79

[13] D. Caillerie, R. Chambon, “Existence and uniqueness for rate problems of geomechanics”, Revue Française de Génie Civil, 8 (2004), 537–561

[14] J.-L. Chaboche, “Constitutive equations for cyclic plasticity and cyclic viscoplasticity”, Int. J. Plasticity, 5 (1989), 247–302 | DOI | Zbl

[15] J.-L. Chaboche, “On some modifications of kinematic hardening to improve the description of ratchetting effects”, Int. J. Plasticity, 7 (1991), 661–678 | DOI

[16] J.-L. Chaboche, “Modeling of ratchetting: evaluation of various approaches”, Eur. J. Mech., A/Solids, 13 (1994), 501–518

[17] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976 | Zbl

[18] K. Gröger, “Initial value problems for elastoplastic and elasto-viscoplastic systems”, Nonlinear Analysis, Function Spaces and Applications, eds. S. Fučík, A. Kufner, Teubner, Leipzig, 1979, 95–127

[19] G. Gudehus, “A comprehensive constitutive equation for granular materials”, Soils Found, 36 (1996), 1–12 | DOI

[20] G. Gudehus, Physical Soil Mechanics, Springer, Berlin–Heidelberg, 2011

[21] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton–Boston, 2000

[22] D. Kolymbas, “An outline of hypoplasticity”, Arch. Appl. Mech., 61 (1991), 143–151 | Zbl

[23] D. Kolymbas, G. Medicus, “Genealogy of hypoplasticity and barodesy”, Int. J. Numer. Anal. Methods Geomech., 40 (2016), 2532–2550 | DOI

[24] V.A. Kovtunenko, P. Krejčí, E. Bauer, L. Siváková, A.V. Zubkova, “On Lyapunov stability in hypoplasticity”, Proc. Equadiff 2017 Conference, eds. K. Mikula, D.Ševčovič, J. Urbán, Slovak University of Technology, Bratislava, 2017, 107–116

[25] V.A. Kovtunenko, P. Krejčí, N. Krenn, E. Bauer, L. Siváková, A.V. Zubkova, “On feasibility of rate-independent stress paths under proportional deformations within hypoplastic constitutive model for granular materials”, Mathematical Models in Engineering, 5 (2019), 119–126 | DOI

[26] J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, 1990 | Zbl

[27] D. Mašín, Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling, Springer, Switzerland, 2019

[28] E. Melan, “Zur Plastizität des räumlichen Kontinuums”, Ingenieur-Archiv, 9 (1938), 116–126 | DOI | Zbl

[29] J. Nečas, I. Hlaváček, Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction, Elsevier, Amsterdam, 1981

[30] A. Niemunis, I. Herle, “Hypoplastic model for cohesionless soils with elastic strain range”, Mech. Cohes.-Frict. Mat., 2 (1997), 279–299 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[31] W. Prager, “Recent developments in the mathematical theory of plasticity”, J. Appl. Phys., 20 (1949), 235–241 | DOI | Zbl

[32] L. Prandtl, “Ein Gedankenmodell zur kinetischen Theorie der festen Körper”, Z. Angew. Math. Mech., 8 (1928), 85–106 | DOI | Zbl

[33] K.R. Rajagopal, A.R. Srinivasa, “On a class of non-dissipative materials that are not hyperelastic”, Proc. R. Soc. A, 465 (2009), 493–500 | DOI | Zbl

[34] O. Sadovskaya, V. Sadovskii, Mathematical Modeling in Mechanics of Granular Materials, Springer, Berlin–Heidelberg, 2012 | Zbl

[35] C. Truesdell, “Remarks on hypo-elasticity”, J. Res. Natl. Bur. Stand., Ser. B. Math. Math. Phys., 67B (1963), 141–143 | DOI | Zbl