A list of integral representations for diagonals of power series of rational functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 624-631.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present integral representations for the diagonals of power series. Such representations are obtained by lowering the multiplicity of integration for the previously known integral representation. The procedure for reducing the order of integration is carried out in the framework of the Leray theory of multidimensional residues. The concept of the amoeba of a complex analytic hypersurface plays a special role in the construction of new integral representations.
Keywords: multidimensional power series, complex integral, integral representation, amoeba, Taylor series, diagonal of a power series.
@article{JSFU_2021_14_5_a9,
     author = {Artem V. Senashov},
     title = {A list of integral representations for diagonals of power series of rational functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {624--631},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/}
}
TY  - JOUR
AU  - Artem V. Senashov
TI  - A list of integral representations for diagonals of power series of rational functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 624
EP  - 631
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/
LA  - en
ID  - JSFU_2021_14_5_a9
ER  - 
%0 Journal Article
%A Artem V. Senashov
%T A list of integral representations for diagonals of power series of rational functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 624-631
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/
%G en
%F JSFU_2021_14_5_a9
Artem V. Senashov. A list of integral representations for diagonals of power series of rational functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 624-631. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/

[1] D. Pochekutov, Diagonal sequences of Laurent coefficients of meromorphic functions of several variables and their application, Dis. Cand. phys-mat. nauk: 01.01.01, Krasnoyarsk, 2010 (in Russian)

[2] J. Denef, L. Lipshitz, “Algebraic power series and diagonals”, J. Number Theory, 26 (1987), 46–67 | DOI | Zbl

[3] L. Lipshitz, “D-finite power series”, J. of Algebra, 122 (1989), 353–373 | DOI | Zbl

[4] A. Poincare, Selected Works in Three Volumes, v. I, New Methods of Celestial Mechanics, Science, M., 1971 (in Russian)

[5] D. Pochekutov, “Diagonals of Laurent series of rational functions”, Sib. mat. zhurn., 50:6 (2009), 1370–1383 (in Russian) | Zbl

[6] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimentional Determinates, Bikhauser, Boston, 1994

[7] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Advances in mathematics, 151:1 (2000), 45–70 | DOI | Zbl

[8] L. Nilsson, M. Passare, A. Tsikh, “Domains of Convergence for A-hypergeometric Series and Integrals”, Journal of Siberian Federal University. Mathematics $\$ Physics, 12:4 (2019), 509–529 | DOI | Zbl

[9] T. Sadykov, A. Tsikh, Hypergeometric and algebraic functions of many variables, Nauka, M., 2014 (in Russian)

[10] A. Tsikh, A. Yger, “Residue currents”, J. Math. Sci. (N.Y.), 120:6 (2004), 1916–2001 | DOI

[11] L. Aizenberg, A. Yuzhakov, Integral representations and deductions in multidimensional complex analysis, Nauka. Sibirskoye Otdeleniye, Novosibirsk, 1979 (in Russian)

[12] A. Tsikh, Multidimensional residues and their applications, Nauka, Novosibirsk, 1988 (in Russian)