Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a9, author = {Artem V. Senashov}, title = {A list of integral representations for diagonals of power series of rational functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {624--631}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/} }
TY - JOUR AU - Artem V. Senashov TI - A list of integral representations for diagonals of power series of rational functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 624 EP - 631 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/ LA - en ID - JSFU_2021_14_5_a9 ER -
%0 Journal Article %A Artem V. Senashov %T A list of integral representations for diagonals of power series of rational functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 624-631 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/ %G en %F JSFU_2021_14_5_a9
Artem V. Senashov. A list of integral representations for diagonals of power series of rational functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 624-631. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a9/
[1] D. Pochekutov, Diagonal sequences of Laurent coefficients of meromorphic functions of several variables and their application, Dis. Cand. phys-mat. nauk: 01.01.01, Krasnoyarsk, 2010 (in Russian)
[2] J. Denef, L. Lipshitz, “Algebraic power series and diagonals”, J. Number Theory, 26 (1987), 46–67 | DOI | Zbl
[3] L. Lipshitz, “D-finite power series”, J. of Algebra, 122 (1989), 353–373 | DOI | Zbl
[4] A. Poincare, Selected Works in Three Volumes, v. I, New Methods of Celestial Mechanics, Science, M., 1971 (in Russian)
[5] D. Pochekutov, “Diagonals of Laurent series of rational functions”, Sib. mat. zhurn., 50:6 (2009), 1370–1383 (in Russian) | Zbl
[6] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimentional Determinates, Bikhauser, Boston, 1994
[7] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Advances in mathematics, 151:1 (2000), 45–70 | DOI | Zbl
[8] L. Nilsson, M. Passare, A. Tsikh, “Domains of Convergence for A-hypergeometric Series and Integrals”, Journal of Siberian Federal University. Mathematics $\$ Physics, 12:4 (2019), 509–529 | DOI | Zbl
[9] T. Sadykov, A. Tsikh, Hypergeometric and algebraic functions of many variables, Nauka, M., 2014 (in Russian)
[10] A. Tsikh, A. Yger, “Residue currents”, J. Math. Sci. (N.Y.), 120:6 (2004), 1916–2001 | DOI
[11] L. Aizenberg, A. Yuzhakov, Integral representations and deductions in multidimensional complex analysis, Nauka. Sibirskoye Otdeleniye, Novosibirsk, 1979 (in Russian)
[12] A. Tsikh, Multidimensional residues and their applications, Nauka, Novosibirsk, 1988 (in Russian)