Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a5, author = {Gulmirza Kh. Khudayberganov and Jonibek Sh. Abdullayev}, title = {Laurent-Hua {Loo-Keng} series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {589--598}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/} }
TY - JOUR AU - Gulmirza Kh. Khudayberganov AU - Jonibek Sh. Abdullayev TI - Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 589 EP - 598 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/ LA - en ID - JSFU_2021_14_5_a5 ER -
%0 Journal Article %A Gulmirza Kh. Khudayberganov %A Jonibek Sh. Abdullayev %T Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 589-598 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/ %G en %F JSFU_2021_14_5_a5
Gulmirza Kh. Khudayberganov; Jonibek Sh. Abdullayev. Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 589-598. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/
[1] É. Cartan, “Sur les domaines bornes homogenes de l'espace de $n$ variables complexes”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 116–162 | DOI
[2] C.L. Siegel, Automorphic functions of several complex variables, Publishing house of foreign literature, M., 1954 (in Russian)
[3] Hua Loo-Keng, Harmonic analysis of functions of several complex variables in classical domains, Inostr. Lit., M., 1959 (in Russian) | Zbl
[4] I.I. Pjateckiǐ-Šapiro, Geometry of classical domains and the theory of automorphic functions, State publishing house of physical and mathematical literature, M., 1961 (in Russian)
[5] G.M. Henkin, “The method of integral representations in complex analysis”, Complex analysis-several variables – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 7, VINITI, M., 1985, 23–124
[6] Xiao Ming, “Regularity of mappings into classical domains”, Mathematische Annalen, 378:3–4 (2020), 1271–1309 | DOI | Zbl
[7] M. Xiao, “Bergman-Harmonic Functions on Classical Domains”, International Mathematics Research Notices, 2019, 1–36 | DOI
[8] G. Khudayberganov, A.M. Khalknazarov, J.Sh. Abdullayev, “Laplace and Hua Luogeng operators”, Russian Mathematics (Izv. Vyssh. Uchebn. Zaved. Mat.), 64:3 (2020), 66–71 | Zbl
[9] G. Khudayberganov, Spectral expansion for functions of several matrices, Preprint P-02-93, Tashkent State University, Tashkent, 1993 (in Russian)
[10] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis in matrix domains, Monograph, Siberian Federal University, Krasnoyarsk, 2011 (in Russian); Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017 (in Russian)
[11] A.G. Sergeev, On matrix and Reinhardt domains, Inst. Mittag-Leffler, Stockholm, 1988
[12] G. Khudayberganov, U.S. Rakhmonov, Z.Q. Matyakubov, “Integral formulas for some matrix domains”, Contemporary Mathematics, 662, AMS, 2016, 89–95 | DOI | Zbl
[13] U.S. Rakhmonov, J. Sh.Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 548–557 | DOI
[14] S.G. Myslivets, “On the Szegő and Poisson kernels in the convex domains in $\mathbb{C}^{n}$”, Russian Mathematics (Izv. Vyssh. Uchebn. Zaved. Mat.), 2019, no. 1, 42–48 | DOI | Zbl
[15] S.G. Myslivets, “Construction of Szegő and Poisson kernels in convex domains”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:6 (2018), 792–795 | DOI | Zbl
[16] G. Khudayberganov, U.S. Rakhmonov, “The Bergman and Cauchy-Szegő kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7:3 (2014), 305–310 | Zbl
[17] G. Khudayberganov, J. Sh. Abdullayev, “Relationship between the Kernels Bergman and Cauchy-Szegő in the domains $\tau ^{+} \left(n-1\right)$ and $\Re _{IV}^{n} $”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:5 (2020), 559–567 | DOI | Zbl
[18] B.P. Otemuratov, G. Khudayberganov, “On Laurent series in space $\mathbb C^n$”, Uzbek Mathematical Journal, 2016, no. 3, 154–159 (in Russian)
[19] B.P. Otemuratov, G. Khudayberganov, “Laurent series for classical Cartan domains”, Acta NUUz, 2:1 (2017), 1–7 (in Russian)
[20] S. Kosbergenov, “On the Carleman formula for a matrix ball”, Russian Math. (Izvestiya VUZ. Matematika), 43:1 (1999), 72–75 | Zbl
[21] G. Khudayberganov, J. Sh.Abdullayev, “Holomorphic continuation into the matrix ball of functions defined on a piece of its skeleton”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021), 296–310 | DOI
[22] F.D. Murnaghan, The Theory of Group Representations, IL, M., 1950 (in Russian)
[23] H. Weyl, The classical groups, IL, M., 1947 (in Russian)
[24] G. Khudayberganov, A. Khalknazarov, “System of $A$-harmonic functions in a matrix ball”, Acta NUUz, 2018, no. 1, 100–107 (in Russian)