Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 589-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to obtain multidimensional analogs of the Laurent series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$. To do this, we first introduce the concept of a "layer of the matrix ball" from ${{\mathbb{C}}^{n}}\left[ m\times m \right]$, then in this layer of the matrix ball we use the properties of integrals of the Bochner-Hua Loo-Keng type to obtain analogs of the Laurent series.
Keywords: holomorphic function, Shilov's boundary, Bochner-Hua Loo Keng integral, orthonormal system.
Mots-clés : matrix ball, Laurent series
@article{JSFU_2021_14_5_a5,
     author = {Gulmirza Kh. Khudayberganov and Jonibek Sh. Abdullayev},
     title = {Laurent-Hua {Loo-Keng} series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {589--598},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/}
}
TY  - JOUR
AU  - Gulmirza Kh. Khudayberganov
AU  - Jonibek Sh. Abdullayev
TI  - Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 589
EP  - 598
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/
LA  - en
ID  - JSFU_2021_14_5_a5
ER  - 
%0 Journal Article
%A Gulmirza Kh. Khudayberganov
%A Jonibek Sh. Abdullayev
%T Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 589-598
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/
%G en
%F JSFU_2021_14_5_a5
Gulmirza Kh. Khudayberganov; Jonibek Sh. Abdullayev. Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 589-598. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a5/

[1] É. Cartan, “Sur les domaines bornes homogenes de l'espace de $n$ variables complexes”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 116–162 | DOI

[2] C.L. Siegel, Automorphic functions of several complex variables, Publishing house of foreign literature, M., 1954 (in Russian)

[3] Hua Loo-Keng, Harmonic analysis of functions of several complex variables in classical domains, Inostr. Lit., M., 1959 (in Russian) | Zbl

[4] I.I. Pjateckiǐ-Šapiro, Geometry of classical domains and the theory of automorphic functions, State publishing house of physical and mathematical literature, M., 1961 (in Russian)

[5] G.M. Henkin, “The method of integral representations in complex analysis”, Complex analysis-several variables – 1, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 7, VINITI, M., 1985, 23–124

[6] Xiao Ming, “Regularity of mappings into classical domains”, Mathematische Annalen, 378:3–4 (2020), 1271–1309 | DOI | Zbl

[7] M. Xiao, “Bergman-Harmonic Functions on Classical Domains”, International Mathematics Research Notices, 2019, 1–36 | DOI

[8] G. Khudayberganov, A.M. Khalknazarov, J.Sh. Abdullayev, “Laplace and Hua Luogeng operators”, Russian Mathematics (Izv. Vyssh. Uchebn. Zaved. Mat.), 64:3 (2020), 66–71 | Zbl

[9] G. Khudayberganov, Spectral expansion for functions of several matrices, Preprint P-02-93, Tashkent State University, Tashkent, 1993 (in Russian)

[10] G. Khudayberganov, A.M. Kytmanov, B.A. Shaimkulov, Complex analysis in matrix domains, Monograph, Siberian Federal University, Krasnoyarsk, 2011 (in Russian); Analysis in matrix domains, Siberian Federal University, Krasnoyarsk, 2017 (in Russian)

[11] A.G. Sergeev, On matrix and Reinhardt domains, Inst. Mittag-Leffler, Stockholm, 1988

[12] G. Khudayberganov, U.S. Rakhmonov, Z.Q. Matyakubov, “Integral formulas for some matrix domains”, Contemporary Mathematics, 662, AMS, 2016, 89–95 | DOI | Zbl

[13] U.S. Rakhmonov, J. Sh.Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 548–557 | DOI

[14] S.G. Myslivets, “On the Szegő and Poisson kernels in the convex domains in $\mathbb{C}^{n}$”, Russian Mathematics (Izv. Vyssh. Uchebn. Zaved. Mat.), 2019, no. 1, 42–48 | DOI | Zbl

[15] S.G. Myslivets, “Construction of Szegő and Poisson kernels in convex domains”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:6 (2018), 792–795 | DOI | Zbl

[16] G. Khudayberganov, U.S. Rakhmonov, “The Bergman and Cauchy-Szegő kernels for matrix ball of the second type”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7:3 (2014), 305–310 | Zbl

[17] G. Khudayberganov, J. Sh. Abdullayev, “Relationship between the Kernels Bergman and Cauchy-Szegő in the domains $\tau ^{+} \left(n-1\right)$ and $\Re _{IV}^{n} $”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:5 (2020), 559–567 | DOI | Zbl

[18] B.P. Otemuratov, G. Khudayberganov, “On Laurent series in space $\mathbb C^n$”, Uzbek Mathematical Journal, 2016, no. 3, 154–159 (in Russian)

[19] B.P. Otemuratov, G. Khudayberganov, “Laurent series for classical Cartan domains”, Acta NUUz, 2:1 (2017), 1–7 (in Russian)

[20] S. Kosbergenov, “On the Carleman formula for a matrix ball”, Russian Math. (Izvestiya VUZ. Matematika), 43:1 (1999), 72–75 | Zbl

[21] G. Khudayberganov, J. Sh.Abdullayev, “Holomorphic continuation into the matrix ball of functions defined on a piece of its skeleton”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021), 296–310 | DOI

[22] F.D. Murnaghan, The Theory of Group Representations, IL, M., 1950 (in Russian)

[23] H. Weyl, The classical groups, IL, M., 1947 (in Russian)

[24] G. Khudayberganov, A. Khalknazarov, “System of $A$-harmonic functions in a matrix ball”, Acta NUUz, 2018, no. 1, 100–107 (in Russian)