Iterations and groups of formal transformations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 584-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of formal iteration. We construct an area preserving mapping which does not have any square root. This leads to a counterexample to Moser's existence theorem for an interpolation problem. We give examples of formal transformation groups such that the iteration problem has a solution for every element of the groups.
Keywords: iteration, functional equations.
Mots-clés : formal transformations
@article{JSFU_2021_14_5_a4,
     author = {Oleg V. Kaptsov},
     title = {Iterations and groups of formal transformations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {584--588},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/}
}
TY  - JOUR
AU  - Oleg V. Kaptsov
TI  - Iterations and groups of formal transformations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 584
EP  - 588
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/
LA  - en
ID  - JSFU_2021_14_5_a4
ER  - 
%0 Journal Article
%A Oleg V. Kaptsov
%T Iterations and groups of formal transformations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 584-588
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/
%G en
%F JSFU_2021_14_5_a4
Oleg V. Kaptsov. Iterations and groups of formal transformations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 584-588. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/

[1] J. Milnor, Dynamics in one complex variable, Third Edition, Princeton University Press, 2006 | Zbl

[2] H. Broer, F. Takens, B. Hasselblatt (eds.), Handbook of dynamical systems, v. 3, 2010 | Zbl

[3] J. Moser, Lectures on Hamiltonian systems, Memoirs of the American Mathematical Society, 81, 1968 | Zbl

[4] M. Kuczma, B. Choczewski, R. Ger, Iterative Functional Equations, Cambridge University Press, 1990 | Zbl

[5] K.T. Chen, “Local Diffeomorphisms-$C^{\infty}$ Realization of Formal Properties”, American Journal of Mathematics, 87:1 (1965), 140–157 | DOI | Zbl

[6] T. Gramchev, S. Walcher, “Normal Forms of Maps: Formal and Algebraic Aspects”, Acta Applicandae Mathematicae, 87 (2005), 123–146 | DOI | Zbl

[7] L.V Ovsyannikov, Analytical groups, Institute of Hydrodynamics, USSR, Novosibirsk, 1972

[8] H. Omori, Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, 158, American Mathematical Society, Providence, RI, USA, 1997 | Zbl

[9] S. Sternberg, “Infinite Lie groups and the formal aspects of dynamic systems”, Journal of Mathematics and Mechanics, 10 (1961), 451–474 | Zbl

[10] D.C. Lewis, “On formal power series transformations”, Duke Mathematical Journal, 5 (1939), 794–805 | DOI

[11] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Springer-Verlag, New York etc., 1988

[12] C.L. Siegel, “Iteration of analytic functions”, Ann. Math., 43 (1942), 607–612 | DOI | Zbl

[13] S. Sternberg, “On the Structure of Local Homeomorphisms of Euclidean n-Space. II”, American Journal of Mathematics, 80:3 (1958), 623–631 | DOI | Zbl

[14] O.V. Kaptsov, “A formal analog of iteration problem”, Continuum Mechanics (Dynamica Sploshnoi Sredy), 63 (1983), 129–135 (in Russian) | Zbl