Iterations and groups of formal transformations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 584-588 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the problem of formal iteration. We construct an area preserving mapping which does not have any square root. This leads to a counterexample to Moser's existence theorem for an interpolation problem. We give examples of formal transformation groups such that the iteration problem has a solution for every element of the groups.
Keywords: iteration, functional equations.
Mots-clés : formal transformations
@article{JSFU_2021_14_5_a4,
     author = {Oleg V. Kaptsov},
     title = {Iterations and groups of formal transformations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {584--588},
     year = {2021},
     volume = {14},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/}
}
TY  - JOUR
AU  - Oleg V. Kaptsov
TI  - Iterations and groups of formal transformations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 584
EP  - 588
VL  - 14
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/
LA  - en
ID  - JSFU_2021_14_5_a4
ER  - 
%0 Journal Article
%A Oleg V. Kaptsov
%T Iterations and groups of formal transformations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 584-588
%V 14
%N 5
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/
%G en
%F JSFU_2021_14_5_a4
Oleg V. Kaptsov. Iterations and groups of formal transformations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 584-588. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a4/

[1] J. Milnor, Dynamics in one complex variable, Third Edition, Princeton University Press, 2006 | Zbl

[2] H. Broer, F. Takens, B. Hasselblatt (eds.), Handbook of dynamical systems, v. 3, 2010 | Zbl

[3] J. Moser, Lectures on Hamiltonian systems, Memoirs of the American Mathematical Society, 81, 1968 | Zbl

[4] M. Kuczma, B. Choczewski, R. Ger, Iterative Functional Equations, Cambridge University Press, 1990 | Zbl

[5] K.T. Chen, “Local Diffeomorphisms-$C^{\infty}$ Realization of Formal Properties”, American Journal of Mathematics, 87:1 (1965), 140–157 | DOI | Zbl

[6] T. Gramchev, S. Walcher, “Normal Forms of Maps: Formal and Algebraic Aspects”, Acta Applicandae Mathematicae, 87 (2005), 123–146 | DOI | Zbl

[7] L.V Ovsyannikov, Analytical groups, Institute of Hydrodynamics, USSR, Novosibirsk, 1972

[8] H. Omori, Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs, 158, American Mathematical Society, Providence, RI, USA, 1997 | Zbl

[9] S. Sternberg, “Infinite Lie groups and the formal aspects of dynamic systems”, Journal of Mathematics and Mechanics, 10 (1961), 451–474 | Zbl

[10] D.C. Lewis, “On formal power series transformations”, Duke Mathematical Journal, 5 (1939), 794–805 | DOI

[11] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd ed., Springer-Verlag, New York etc., 1988

[12] C.L. Siegel, “Iteration of analytic functions”, Ann. Math., 43 (1942), 607–612 | DOI | Zbl

[13] S. Sternberg, “On the Structure of Local Homeomorphisms of Euclidean n-Space. II”, American Journal of Mathematics, 80:3 (1958), 623–631 | DOI | Zbl

[14] O.V. Kaptsov, “A formal analog of iteration problem”, Continuum Mechanics (Dynamica Sploshnoi Sredy), 63 (1983), 129–135 (in Russian) | Zbl