On reductants of two groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 566-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the reductant of the dihedral group $D_n$, consisting of a set of axial symmetries, and the sphere $S^2$ as a reductant of the group $\mathrm{SU}(2, \mathbb{C}) \cong S^3$ (the group of unit quaternions). By introducing the Sabinin's multiplication on the reductant of $D_n$, we get a quasigroup with unit.
Keywords: groups reductants, quasigroups.
@article{JSFU_2021_14_5_a2,
     author = {Dmitry P. Fedchenko and Vitaly A. Stepanenko and Rustam V. Bikmurzin and Victoria V. Isaeva},
     title = {On reductants of two groups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {566--572},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a2/}
}
TY  - JOUR
AU  - Dmitry P. Fedchenko
AU  - Vitaly A. Stepanenko
AU  - Rustam V. Bikmurzin
AU  - Victoria V. Isaeva
TI  - On reductants of two groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 566
EP  - 572
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a2/
LA  - en
ID  - JSFU_2021_14_5_a2
ER  - 
%0 Journal Article
%A Dmitry P. Fedchenko
%A Vitaly A. Stepanenko
%A Rustam V. Bikmurzin
%A Victoria V. Isaeva
%T On reductants of two groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 566-572
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a2/
%G en
%F JSFU_2021_14_5_a2
Dmitry P. Fedchenko; Vitaly A. Stepanenko; Rustam V. Bikmurzin; Victoria V. Isaeva. On reductants of two groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 566-572. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a2/

[1] N. Jacobson, Lie algebras, Courier Corporation, 1979

[2] A.I. Maltsev, “Analytic loops”, Matematiceskij sbornik, 78:3 (1955), 569–576 (in Russian) | Zbl

[3] S.V. Aleshin, “Finite automata and the Burnside problem for periodic groups”, Math. Notes, 11 (1972), 199–203 | DOI | Zbl

[4] L.V. Sabinin, “Loop geometries”, Mathematical notes of the Academy of Sciences of the USSR, 12:5 (1972), 799–805 | DOI

[5] A.L. Myl'nikov, “Minimal non-group-like twisted subsets with involutions”, Siberian Mathematical Journal, 48:5 (2007), 879–883 | DOI | Zbl

[6] V.D. Belousov, Foundations of the theory of quasigroups and loops, Nauka, M., 1967 (in Russian)

[7] A. Ginzburg, Algebraic theory of automata, Academic Press, 2014