Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a14, author = {Vladimir V. Rybakov}, title = {Satisfiability in {Boolean} logic {(SAT} problem) is polynomial}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {667--671}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a14/} }
TY - JOUR AU - Vladimir V. Rybakov TI - Satisfiability in Boolean logic (SAT problem) is polynomial JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 667 EP - 671 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a14/ LA - en ID - JSFU_2021_14_5_a14 ER -
Vladimir V. Rybakov. Satisfiability in Boolean logic (SAT problem) is polynomial. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 667-671. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a14/
[1] S. Cook, “The complexity of theorem proving procedures”, Proceedings of the Third Annual CAM Symposium on Theory of Computing, 1971, 151–158 | Zbl
[2] “A survey of Russian approaches to perebor (brute-force searches) algorithms”, Annals of the History of Computin, 6:4 (1984), 384–400 | DOI | Zbl
[3] B. Selman, D. Mitchell, H. Levesque, “Generating Hard Satisfiability Problems”, Artificial Intelligence, 81:1 (1996), 1729
[4] T.J. Schaefer, “The complexity of satisfiability problems”, Proceedings of the 10th Annual CAM Symposium on Theory of Computing (San Diego, California), 1978, 216–226 | Zbl
[5] V. Rybakov, “Admissible Rules in Pretabular Modal Logic”, Algebra and Logic, 20 (1981), 291–307 | DOI
[6] V. Rybakov, “Criterion for Admissibility for Rules in the Modal System S4 and Intuitionistic Logic”, Algebra and Logic, 23:5 (1984), 291–307 | DOI
[7] V.V. Rybakov, “Logical equations and admissible rules of inference with parameters in modal provability logics”, Studia Logica, 49:2 (1990), 215–239 | DOI | Zbl
[8] V.V. Rybakov, “Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus”, Annals of Pure and Applied Logic, 50:1 (1990), 71–106 | DOI | Zbl
[9] V.V. Rybakov, Admissibility of Logical Inference Rules, Studies in Logic and the Foundations of Mathematics, 136, 1st Edition, Elsevier, 1997 | Zbl
[10] F. Massacci, L. Marraro, “Logical Cryptanalysis as a SAT Problem”, Journal of Automated Reasoning, 24:1 (2000), 165–203 | DOI | Zbl
[11] Marijn J. H. Heule, Hans van Maaren, “Look-Ahead Based SAT Solvers”, Handbook of Satisfiability, IOS Press, 2009, 155–184
[12] C. Moore, S. Mertens, The Nature of Computation, Oxford University Press, 2011 | Zbl