Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_5_a1, author = {Valery V. Denisenko and Semen A. Nesterov}, title = {Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {554--565}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/} }
TY - JOUR AU - Valery V. Denisenko AU - Semen A. Nesterov TI - Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 554 EP - 565 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/ LA - en ID - JSFU_2021_14_5_a1 ER -
%0 Journal Article %A Valery V. Denisenko %A Semen A. Nesterov %T Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 554-565 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/ %G en %F JSFU_2021_14_5_a1
Valery V. Denisenko; Semen A. Nesterov. Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 554-565. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/
[1] V.V. Denisenko, “Statements of the boundary value problems in mathematical simulation of a quasistationary electric field in the atmosphere and ionosphere”, Journal of Physics: Conference Series, 1715 (2021), 012016, 10 pp. | DOI
[2] V.V. Denisenko, M.J. Rycroft, R.G. Harrison, “Mathematical Simulation of the Ionospheric Electric Field as a Part of the Global Electric Circuit”, Surveys in Geophysics, 40:1 (2019), 1–35 | DOI
[3] V.V. Denisenko, “The energy method for three dimensional elliptical equations with asymmetric tensor coefficients”, Siberian Mathematical Journal, 38:6 (1997), 1099–1111 | DOI | Zbl
[4] V.V. Denisenko, “Energy method in problems of transfer in media moving in multiply connected domains”, Russian Journal of Numerical Analysis and Mathematical Modelling, 15:2 (2000), 127–143 | DOI
[5] V.V. Denisenko, “Symmetric operators for transfer problems in three-dimensional moving media”, Siberian Journal of Industrial Mathematics, 4:1 (2001), 73–82 | Zbl
[6] J.K. Hargreaves, The Upper Atmosphere and Solar-terrestrial Relations, Van Nostrand Reinold, New York, 1979
[7] A.N. Konovalov, Conjugate-factorized models in mathematical physics problems, Preprint No 1095, Computing Center SB RAS, Novosibirsk, 1997 (in Russian) | Zbl
[8] S.L. Sobolev, Some applications of the functional analysis in mathematical physics, Publishing house of the USSR Academy of Siences, Novosibirsk, 1962 (in Russian)
[9] V.V. Denisenko, S.A. Nesterov, Inequalities for the norms of vector functions in a spherical layer, Cornell University Library, 2020, arXiv: 2010.11613
[10] E.B. Bykhovsky, N.V. Smirnov, “About the orthogonal decomposition of the space of the vector-functions and about the operators of vector analysis”, Reports of Steklov Moscow Mathematical Institute, 59 (1960), 5–36 (in Russian)
[11] S.G. Mikhlin, Variational methods in mathematical physics, Gostekhizdat, M., 1957 (in Russian)