Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 554-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional elliptic boundary value problems arising in the mathematical modeling of quasi-stationary electric fields and currents in conductors with gyrotropic conductivity tensor in domains homeomorphic to the spherical layer are considered. The same problems are mathematical models of thermal conductivity or diffusion in moving or gyrotropic media. The operators of the problems in the traditional formulation are non-symmetric. New statements of the problems with symmetric positive definite operators are proposed. For the four boundary value problems the quadratic energy functionals, to the minimization of which the solutions of these problems are reduced, are constructed. Estimates of the obtained quadratic forms are made in comparison with the form appearing in the Dirichlet principle for the Poisson equation.
Keywords: mathematical modeling, energy method, asymmetric operator.
Mots-clés : elliptic equation
@article{JSFU_2021_14_5_a1,
     author = {Valery V. Denisenko and Semen A. Nesterov},
     title = {Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {554--565},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/}
}
TY  - JOUR
AU  - Valery V. Denisenko
AU  - Semen A. Nesterov
TI  - Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 554
EP  - 565
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/
LA  - en
ID  - JSFU_2021_14_5_a1
ER  - 
%0 Journal Article
%A Valery V. Denisenko
%A Semen A. Nesterov
%T Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 554-565
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/
%G en
%F JSFU_2021_14_5_a1
Valery V. Denisenko; Semen A. Nesterov. Energy method for the elliptic boundary value problems with asymmetric operators in a spherical layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 5, pp. 554-565. http://geodesic.mathdoc.fr/item/JSFU_2021_14_5_a1/

[1] V.V. Denisenko, “Statements of the boundary value problems in mathematical simulation of a quasistationary electric field in the atmosphere and ionosphere”, Journal of Physics: Conference Series, 1715 (2021), 012016, 10 pp. | DOI

[2] V.V. Denisenko, M.J. Rycroft, R.G. Harrison, “Mathematical Simulation of the Ionospheric Electric Field as a Part of the Global Electric Circuit”, Surveys in Geophysics, 40:1 (2019), 1–35 | DOI

[3] V.V. Denisenko, “The energy method for three dimensional elliptical equations with asymmetric tensor coefficients”, Siberian Mathematical Journal, 38:6 (1997), 1099–1111 | DOI | Zbl

[4] V.V. Denisenko, “Energy method in problems of transfer in media moving in multiply connected domains”, Russian Journal of Numerical Analysis and Mathematical Modelling, 15:2 (2000), 127–143 | DOI

[5] V.V. Denisenko, “Symmetric operators for transfer problems in three-dimensional moving media”, Siberian Journal of Industrial Mathematics, 4:1 (2001), 73–82 | Zbl

[6] J.K. Hargreaves, The Upper Atmosphere and Solar-terrestrial Relations, Van Nostrand Reinold, New York, 1979

[7] A.N. Konovalov, Conjugate-factorized models in mathematical physics problems, Preprint No 1095, Computing Center SB RAS, Novosibirsk, 1997 (in Russian) | Zbl

[8] S.L. Sobolev, Some applications of the functional analysis in mathematical physics, Publishing house of the USSR Academy of Siences, Novosibirsk, 1962 (in Russian)

[9] V.V. Denisenko, S.A. Nesterov, Inequalities for the norms of vector functions in a spherical layer, Cornell University Library, 2020, arXiv: 2010.11613

[10] E.B. Bykhovsky, N.V. Smirnov, “About the orthogonal decomposition of the space of the vector-functions and about the operators of vector analysis”, Reports of Steklov Moscow Mathematical Institute, 59 (1960), 5–36 (in Russian)

[11] S.G. Mikhlin, Variational methods in mathematical physics, Gostekhizdat, M., 1957 (in Russian)