Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_4_a5, author = {Victor K. Andreev and Irina V. Stepanova}, title = {Inverse problem for source function in parabolic equation at {Neumann} boundary conditions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {445--451}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/} }
TY - JOUR AU - Victor K. Andreev AU - Irina V. Stepanova TI - Inverse problem for source function in parabolic equation at Neumann boundary conditions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 445 EP - 451 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/ LA - en ID - JSFU_2021_14_4_a5 ER -
%0 Journal Article %A Victor K. Andreev %A Irina V. Stepanova %T Inverse problem for source function in parabolic equation at Neumann boundary conditions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 445-451 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/ %G en %F JSFU_2021_14_4_a5
Victor K. Andreev; Irina V. Stepanova. Inverse problem for source function in parabolic equation at Neumann boundary conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 445-451. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/
[1] A.I. Kozhanov, “Parabolic equations with an unknown time-dependent coefficient”, Comput. Math. and Math. Phys., 45:12 (2005), 2085–2101 | MR | Zbl
[2] F. Kanca, “Inverse coefficient problem of the parabolic equation with periodic boundary and integral overdetermination conditions”, Abstract and Applied Analysis, 2013, 659804, 7 pp. | DOI | MR | Zbl
[3] M.S. Hussein, D. Lesnic, M.I. Ismailov, “An inverse problem of finding the time-dependent diffusion coefficient from an integral condition”, Math. Meth. in the Appl. Sci., 39:5 (2016), 963–980 | DOI | MR | Zbl
[4] S.G. Pyatkov, “Inverse problems in the heat and mass transfer theory”, Vestnik of Ugra State Univ., 4:47 (2017), 61–78 (in Russian)
[5] S.G. Pyatkov, E.I. Safonov, “On some classes on linear inverse problems for parabolic equations”, Siberian Electronic Mathematical Reports, 11 (2014), 777–799 (in Russian) | MR | Zbl
[6] I.A. Vasin, V.L. Kamynin, “On the asymptotic behavior of the solutions of inverse problems for parabolic equations”, Siberian Mathematical Journal, 38:4 (1997), 647–662 | DOI | MR | Zbl
[7] S.G. Pyatkov, M.A. Verzhbitskii, “Inverse problems of recovering the boundary data with integral overdetermination conditions”, Bulletin of the South Ural State University. Ser. Math. Mech. Phys., 10:2 (2018), 37–46 (in Russian) | DOI | Zbl
[8] N.B. Kerimov, M.I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. of Math. Anal. Appl., 396 (2012), 546–554 | DOI | MR | Zbl
[9] I.D. Iskenderov, A. Ya.Akhundov, “Inverse problem for a linear system of parabolic equations”, Doklady Mathematics, 79:1 (2009), 73–75 | DOI | MR | Zbl
[10] M.I. Ivanchov, “Some inverse problems for the heat equation with nonlocal boundary conditions”, Ukrainian Mathematical Journal, 45 (1994), 1186–1192 | DOI | MR
[11] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999 | MR
[12] O.M. Alifanov, Inverse heat transfer problems, Springer-Verlag, Berlin, 1994 | MR | Zbl
[13] Yu.Ya.Belov, Inverse problems for partial differential equations, VSP, Utrecht, 2002 | MR | Zbl
[14] A. Fridman, Partial differential equations of parabolic type, Pretince-Hall, 1964 | MR
[15] A.D. Polyanin, V.E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists Second Edition, Chapman and Hall/CRC Press, Boca Raton–London–New York, 2016 | MR
[16] V.K. Andreev, E.P. Magdenko, “On the asymptotic behavior of the conjugate problem describing a creeping axisymetric thermocapillary motion”, J. Siberian Federal Univ. Math. and Phys., 13:1 (2020), 26–36 | DOI | MR | Zbl
[17] V.K. Andreev, E.N. Lemeshkova, Linear problems of convective motions with surfaces, SFU, Krasnoyarsk, 2018 (in Russian)