Inverse problem for source function in parabolic equation at Neumann boundary conditions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 445-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second initial-boundary value problem for a parabolic equation is under study. The term in the source function, depending only on time, is to be unknown. It is shown that in contrast to the standard Neumann problem, for the inverse problem with integral overdetermination condition the convergence of it nonstationary solution to the corresponding stationary one is possible for natural restrictions on the input problem data.
Keywords: inverse problem, source function, a priori estimate, nonlocal overdetermination condition.
Mots-clés : parabolic equation
@article{JSFU_2021_14_4_a5,
     author = {Victor K. Andreev and Irina V. Stepanova},
     title = {Inverse problem for source function in parabolic equation at {Neumann} boundary conditions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {445--451},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/}
}
TY  - JOUR
AU  - Victor K. Andreev
AU  - Irina V. Stepanova
TI  - Inverse problem for source function in parabolic equation at Neumann boundary conditions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 445
EP  - 451
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/
LA  - en
ID  - JSFU_2021_14_4_a5
ER  - 
%0 Journal Article
%A Victor K. Andreev
%A Irina V. Stepanova
%T Inverse problem for source function in parabolic equation at Neumann boundary conditions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 445-451
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/
%G en
%F JSFU_2021_14_4_a5
Victor K. Andreev; Irina V. Stepanova. Inverse problem for source function in parabolic equation at Neumann boundary conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 445-451. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a5/

[1] A.I. Kozhanov, “Parabolic equations with an unknown time-dependent coefficient”, Comput. Math. and Math. Phys., 45:12 (2005), 2085–2101 | MR | Zbl

[2] F. Kanca, “Inverse coefficient problem of the parabolic equation with periodic boundary and integral overdetermination conditions”, Abstract and Applied Analysis, 2013, 659804, 7 pp. | DOI | MR | Zbl

[3] M.S. Hussein, D. Lesnic, M.I. Ismailov, “An inverse problem of finding the time-dependent diffusion coefficient from an integral condition”, Math. Meth. in the Appl. Sci., 39:5 (2016), 963–980 | DOI | MR | Zbl

[4] S.G. Pyatkov, “Inverse problems in the heat and mass transfer theory”, Vestnik of Ugra State Univ., 4:47 (2017), 61–78 (in Russian)

[5] S.G. Pyatkov, E.I. Safonov, “On some classes on linear inverse problems for parabolic equations”, Siberian Electronic Mathematical Reports, 11 (2014), 777–799 (in Russian) | MR | Zbl

[6] I.A. Vasin, V.L. Kamynin, “On the asymptotic behavior of the solutions of inverse problems for parabolic equations”, Siberian Mathematical Journal, 38:4 (1997), 647–662 | DOI | MR | Zbl

[7] S.G. Pyatkov, M.A. Verzhbitskii, “Inverse problems of recovering the boundary data with integral overdetermination conditions”, Bulletin of the South Ural State University. Ser. Math. Mech. Phys., 10:2 (2018), 37–46 (in Russian) | DOI | Zbl

[8] N.B. Kerimov, M.I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. of Math. Anal. Appl., 396 (2012), 546–554 | DOI | MR | Zbl

[9] I.D. Iskenderov, A. Ya.Akhundov, “Inverse problem for a linear system of parabolic equations”, Doklady Mathematics, 79:1 (2009), 73–75 | DOI | MR | Zbl

[10] M.I. Ivanchov, “Some inverse problems for the heat equation with nonlocal boundary conditions”, Ukrainian Mathematical Journal, 45 (1994), 1186–1192 | DOI | MR

[11] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 1999 | MR

[12] O.M. Alifanov, Inverse heat transfer problems, Springer-Verlag, Berlin, 1994 | MR | Zbl

[13] Yu.Ya.Belov, Inverse problems for partial differential equations, VSP, Utrecht, 2002 | MR | Zbl

[14] A. Fridman, Partial differential equations of parabolic type, Pretince-Hall, 1964 | MR

[15] A.D. Polyanin, V.E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists Second Edition, Chapman and Hall/CRC Press, Boca Raton–London–New York, 2016 | MR

[16] V.K. Andreev, E.P. Magdenko, “On the asymptotic behavior of the conjugate problem describing a creeping axisymetric thermocapillary motion”, J. Siberian Federal Univ. Math. and Phys., 13:1 (2020), 26–36 | DOI | MR | Zbl

[17] V.K. Andreev, E.N. Lemeshkova, Linear problems of convective motions with surfaces, SFU, Krasnoyarsk, 2018 (in Russian)