The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 497-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of determining the source function and the leading coefficient in a multidimensional semilinear parabolic equation with overdetermination conditions given on two different hypersurfaces. The existence and uniqueness theorem for the classical solution of the inverse problem in the class of smooth bounded functions is proved. A condition is found for the dependence of the upper bound of the time interval, in which there is a unique solution to the inverse problem, on the input data.
Keywords: inverse problem, overdetermination conditions, semilinear multidimensional parabolic equation, Cauchy problem, weak approximation method, input data
Mots-clés : identification of coefficients.
@article{JSFU_2021_14_4_a11,
     author = {Svetlana V. Polyntseva and Kira I. Spirina},
     title = {The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {497--506},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a11/}
}
TY  - JOUR
AU  - Svetlana V. Polyntseva
AU  - Kira I. Spirina
TI  - The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 497
EP  - 506
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a11/
LA  - en
ID  - JSFU_2021_14_4_a11
ER  - 
%0 Journal Article
%A Svetlana V. Polyntseva
%A Kira I. Spirina
%T The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 497-506
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a11/
%G en
%F JSFU_2021_14_4_a11
Svetlana V. Polyntseva; Kira I. Spirina. The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 497-506. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a11/

[1] Yu.Ya.Belov, I.V. Frolenkov, “On the problem of identification two coefficients of a parabolic semilinear equation”, Vestnik KrasGU, 1 (2004), 140–149 (in Russian)

[2] Yu.Ya.Belov, I.V. Frolenkov, “Coefficient Identification Problems for Semilinear Parabolic Equations”, Doklady Mathematics, 72:2 (2005), 737–739 | Zbl

[3] Yu.Ya.Belov, I.V. Frolenkov, “On the problem of identifying two coefficients of a parabolic semilinear equation with overdetermination conditions defined on a smooth curve”, Computational technologies, 11:2006, part 1 (2006), 46–54 (in Russian) | Zbl

[4] Yu.Ya. Belov, S.A. Cantor, The method of weak approximation, KrasGU, Krasnoyarsk, 1999

[5] N.N. Yanenko, Method of fractional steps for solving multidimensional problems of mathematical physics, Novosibirsk, 1967 | MR | Zbl

[6] A.M. Il'in, A.S. Kalashnikov, O.A. Oleynik, “Linear second-order equations of parabolic type”, UMN, 17 (1962), 3–146 | MR

[7] B.M. Rozhdestvenskiy, N.N. Yanenko, Systems of quasilinear equations, Nauka, M., 1978 | MR

[8] L. V. Kantorovich, G.P. Akilov, Functional Analysis, 2nd Edition, Nauka, M., 1977 | MR