Solution of a two-layer flow problem with inhomogeneous evaporation at the thermocapillary interface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 404-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Ostroumov–Birikh type exact solution of thermodiffusion convection equations is constructed in the frame of mathematical model considering evaporation through the liquid–gas interface and the influence of direct and inverse thermodiffusion effects. It is interpreted as a solution describing steady flow of evaporating liquid driven by co-current gas-vapor flux on a working section of a plane horizontal channel. Functional form of required functions is presented. An algorithm for finding all the constants and parameters contained in the solution is outlined, and their explicit expressions are written. The solution is derived for the case of vapor absorption on the upper wall of the channel which is set with the help of the first kind boundary condition for the function of vapor concentration. Applicability field of the solution is briefly discussed.
Keywords: mathematical model, boundary value problem, evaporative convection.
Mots-clés : exact solution
@article{JSFU_2021_14_4_a1,
     author = {Victoria B. Bekezhanova and Olga N. Goncharova and Ilya A. Shefer},
     title = {Solution of a two-layer flow problem with inhomogeneous evaporation at the thermocapillary interface},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {404--413},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a1/}
}
TY  - JOUR
AU  - Victoria B. Bekezhanova
AU  - Olga N. Goncharova
AU  - Ilya A. Shefer
TI  - Solution of a two-layer flow problem with inhomogeneous evaporation at the thermocapillary interface
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 404
EP  - 413
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a1/
LA  - en
ID  - JSFU_2021_14_4_a1
ER  - 
%0 Journal Article
%A Victoria B. Bekezhanova
%A Olga N. Goncharova
%A Ilya A. Shefer
%T Solution of a two-layer flow problem with inhomogeneous evaporation at the thermocapillary interface
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 404-413
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a1/
%G en
%F JSFU_2021_14_4_a1
Victoria B. Bekezhanova; Olga N. Goncharova; Ilya A. Shefer. Solution of a two-layer flow problem with inhomogeneous evaporation at the thermocapillary interface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 4, pp. 404-413. http://geodesic.mathdoc.fr/item/JSFU_2021_14_4_a1/

[1] V.B. Bekezhanova, O.N. Goncharova, “Problems of the evaporative convection (review)”, Fluid Dyn., 53:1 (2018), S69–S102 | DOI | MR | Zbl

[2] O.N. Goncharova, E.V. Rezanova, Yu.V. Lyulin, O.A. Kabov, “Analysis of a convective fluid flow with a concurrent gas flow with allowance for evaporation”, High Temperature, 55:6 (2017), 887–897 | DOI

[3] V.B. Bekezhanova, O.N. Gocnahrova, I.A. Shefer, “Analysis of an exact solution of problem of the evaporative convection (Review). Part I. Plane case”, Journal of Siberian Federal University. Mathematics $\$ Physics, 11:2 (2018), 178–190 | DOI | MR | Zbl

[4] V.B. Bekezhanova, O.N. Goncharova, “Influence of the Dufour and Soret effects on the characteristics of evaporating liquid flows”, Int. J. Heat Mass Transfer, 154:2020 (1196), 119696 | DOI

[5] L.G. Napolitano, “Plane Marangoni–Poiseuille flow two immiscible fluids”, Acta Astronaut., 7 (1980), 461–478 | DOI | Zbl

[6] M.I. Shliomis, V.I. Yakushin, “Convection in a two-layers binary system with an evaporation”, Collected papers: Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidrodinamika, 4 (1972), 129–140 (in Russian)

[7] O.N. Goncharova, E.V. Rezanova, “Example of an exact solution of the stationary problem of two-layer flows with evaporation at the interface”, J. Appl. Mech. Tech. Phys., 55:2 (2014), 247–257 | DOI | MR | Zbl

[8] O.N. Goncharova, O.A. Kabov, “Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection”, J. Phys.: Conf. Ser., 754 (2016), 032008 | DOI

[9] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, 2nd ed., Butterworth–Heinemahh, Oxford, 1987 | MR

[10] S.R. De Groot, P. Mazur, Non-equilibrium Thermodynamics, Dover, London, 1984 | MR | Zbl

[11] V.B. Bekezhanova, O.N. Goncharova, “Modeling of three dimensional thermocapillary flows with evaporation at the interface based on the solutions of a special type of the convection equations”, Appl. Math. Model., 62 (2018), 145–162 | DOI | MR | Zbl

[12] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachev, Mathematical Models of Convection, De Gruyter, Berlin–Boston, 2020 | MR | Zbl

[13] B. Haut, P. Colinet, “Surface-tension-driven instability of a liquid layer evaporating into an inert gas”, J. of Colloid and Interface Science, 285 (2005), 296–305 | DOI

[14] H. Machrafi, Y. Lyulin, C.S. Iorio, O. Kabov, P.C. Dauby, “Numerical parametric study of the evaporation rate of a liquid under a shear gas flow: experimental validation and the importance of confinement on the convection cells and the evaporation rate”, Int. J. Heat Fluid Flow, 72 (2018), 8–19 | DOI | MR